**Unit Description**
This unit introduces the use of inductive reasoning to extend a pattern. Additionally, counting techniques and mathematical modeling, will be used to find solutions to real-life problems. The development of arguments for geometric situations, conjectures, and convincing arguments are first based on experimental data, then are developed from inductive reasoning, and, finally are presented using deductive proofs in two-column, flow patterns, paragraphs, and indirect formats.

**Student Understandings**
Students apply inductive reasoning to identify terms of a sequence. Students recognize and use counting techniques to solve real-life problems. Students understand the basic role a proof plays in mathematics. Students learn to distinguish proofs from convincing arguments. They understand that proofs may be generated by first proving numerical arguments such as measurements, and then by replacing the measurements with variables. Students will understand conditional statements and how to write out a formal two-column proof.

<table>
<thead>
<tr>
<th>GLE</th>
<th>GLEs</th>
<th>Evidence / Assessments of learning</th>
<th>Instructional Notes/Strategies</th>
<th>Differentiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>E</td>
<td>Compare and contrast inductive and deductive reasoning approaches to justify conjectures and solve problems (G-4-H) (G-6-H)</td>
<td>Section 2-1 Inductive Reasoning and Conjecture p. 62 – 66</td>
<td>For Remediation: 1. Create a game (matching-sort of game) using simple to moderate level numerical and pictorial patterns. Each matching set would include a card with the pattern itself, a card with the next term, and a card with the rule of how to get the next term. 2. Within ability level groups, have students complete Unit 2 Activity-Specific Assessment, Activity 2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Define and use inductive Reasoning</td>
<td>Unit 1 Activity 2 BLM</td>
<td>For Enrichment: 1. Same game as above but with harder patterns. (DI strategy) 2. <strong>Unit 1 Activity 5</strong>: Figurate Numbers 3. Within ability level groups, have students complete Unit 2 Activity-Specific Assessment, Activity 2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Creating conjectures from observations of patterns.</td>
<td>1 day</td>
<td>Technology Integration:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Finding the next term from numeric and geometric pattern and their relations.</td>
<td>Geometry Activity – Matrix Logic in Textbook(p 88)</td>
<td>LPSS Addendum 1 (posted on BB) contains problems to use for Activity Two week vacation Dinner For a family of four</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Can students give examples of correct and incorrect usage of inductive reasoning?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Technology Integration:**
- Compare and contrast inductive and deductive reasoning approaches to justify conjectures and solve problems (G-4-H) (G-6-H)
- Use Logic puzzle to increase critical thinking skills. Like: Matrix Puzzles, Ken Ken, Sudoku…etc.
- Compare and contrast inductive and deductive reasoning
- For Remediation: 1. Logic puzzles will naturally have to be differentiated because not all students can think logically. So, the beginners will need some easier puzzles to start with. As the school year moves on, they can try harder puzzles to challenge themselves. 2. Give lots of examples of inductive vs deductive reasoning; Discovering Geometry has good examples of
# Lafayette Parish School System
## Geometry Curriculum Map
### Unit 1: Inductive vs Deductive Reasoning

**Time Frame:** 4 weeks  
**August 12 to September 13, 2010**  
**Edusoft Range:** 9-13 to 9-17

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence / Assessments of learning</th>
<th>Instructional Notes/Strategies</th>
<th>Differentiation</th>
</tr>
</thead>
</table>
| 23 I  | Draw and justify conclusions based on the use of logic (e.g., conditional statements, converse, inverse, contrapositive) (D-8-H) (G-6-H) (N-7-H) | Can students use deductive reasoning to answer questions based on logical reasoning? Can students develop inductive arguments for conjectures and offer reasons supporting their validity? | 1 day | For Enrichment:  
1. **Unit 2 Activity 1 BLM** (Frank's puzzle)  
2. **LPSS Addendum 2** (posted on BB)  
**Technology Integration:**  
1. Websites of logic puzzles:  
   - [http://kenken.com/](http://kenken.com/)  
   - [http://setgame.com/](http://setgame.com/)  
2. [www.sparknotes.com](http://www.sparknotes.com) has explanations and examples of inductive vs. deductive reasoning. |

<table>
<thead>
<tr>
<th>Test 1</th>
<th>½ day</th>
<th></th>
</tr>
</thead>
</table>
| 23 I   | Draw and justify conclusions based on the use of logic (e.g., conditional statements, converse, inverse, contrapositive) (D-8-H) (G-6-H) (N-7-H) | • Define, write and identify conditional statements, converse, inverse and contrapositive, and writing a statement in an if-then form.  
• Use the Law of detachment and Law of Syllogism.  
Can students defined, write and identify conditional statement, converse, inverse and contrapositives? | Section 2-3 Conditional Statements p. 75 – 80  
Section 2-4 Deductive Reasoning p. 82-87  
Bi-conditional statements p. 81  
Law of Syllogisms P. 82 & 83  
Not directly tested on the GEE but is tested on End of Course  
**Unit 2 Activity 5**  
**Unit 2 Activity 6**  
2 days | For Remediation:  
1. **LPSS Activity** - “Murder Mystery Puzzles” (posted on BB)  
2. Play games such as “Mind Trap” or “Clue”.  
**For Enrichment:**  
1. Work through this [hands-on lesson on AND & OR using circuits](http://www.sparknotes.com)  
2. Read any of the Sherlock Holmes’ mysteries and create some type of product (essay, poem, PowerPoint, etc) explaining how he uses deductive reasoning to solve crimes.  
3. Watch NCIS, Numb3rs, Criminal Minds, Law & Order, etc. and create some type of product (essay, poem, PowerPoint, etc) explaining how the detectives use inductive and deductive reasoning.  
**Technology Integration:** |

| 19 I   | Develop formal and informal proofs (e.g., Pythagorean theorem, flow charts, paragraphs) (G-6-H) | • Examine Properties of Equality  
• Two-column proofs to verify Algebraic relationships and geometric postulates. | Section 2-6 Algebraic Proof p. 94 – 100  
**Unit 2 Activity 7 and Activity Specific Assessment**  
1 day | For Remediation:  
1. Use proof #1 and/or #2 from **Unit 2 Activity 7 BLM**.  
Proof(s) should be cut apart and students work as a group to reassemble the proof(s) in the correct order.  
2. Fill-in-the-blank algebraic proofs. May work in a group or individually depending on ability level. |
## Lafayette Parish School System
### Geometry Curriculum Map
#### Unit 1: Inductive vs Deductive Reasoning

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence / Assessments of learning</th>
<th>Instructional Notes/Strategies</th>
<th>Differentiation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Can students complete algebraic and geometric proofs using appropriate properties and postulates?</td>
<td>For Enrichment: 1. Use proof #3 and/or #4 from Unit 2 Activity 7 BLM. Proof(s) should be cut apart, and students work as a group or individually to reassemble the proof(s) in the correct order. 2. Students will compose an algebraic proof choosing their format from 2-column or paragraph proofs.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>For Remediation: 1. Use cards with pictures on them to simulate the process of combination and permutation (such as pictures of shirts, pants, shoes, etc create all possible outfits). LPSS Activity - Permutation &amp; Combination (posted on BB)</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>E</td>
<td>Use counting procedures and techniques to solve real-life problems (D-9-H)</td>
<td>Example 1 (p 89); #48-49 (p265); #4 (p278); #31 (p627).</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>I</td>
<td>Use discrete math to model real-life situations (e.g., fair games, elections) (D-9-H)</td>
<td>Unit 1 Activity 7 &amp; 8-round table</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Calculate Combination &amp; permutation</td>
<td>Unit 1 Activity-Specific Assessment, Activity 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Use tree diagram to as a counting procedure</td>
<td>Addendum #4 (posted on BB) - Problems may be used as focus or as problem of the day and tested throughout the year</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Determine simple probability</td>
<td>3 days</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Investigate simple experimental probability</td>
<td>Test ½ day</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Can students solve a real-life sequence problem based on counting?</td>
<td>Test ½ day</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unit 1 test 1 day</td>
<td></td>
</tr>
</tbody>
</table>

For Enrichment: 1. Determine the probability of winning the lotto. 2. LPSS Activity - Permutation and Combination (posted on BB)

For Remediation: 1. Use the following link to review the probability concept. The link includes a review of the concept, interactive practice, and additional challenge problems. [http://www.regentsprep.org/Regents/math/ALGEBRA/APR1/indexAPR1.htm](http://www.regentsprep.org/Regents/math/ALGEBRA/APR1/indexAPR1.htm)

Technology Integration:

**Test**
- ½ day
- 1 day

**Unit 1 test**

---

**Essential:** Big ideas/covered most frequently; 50% of content; 60-70% of instructional time; high # of test items on state assessment; mastery in current year

**Important:** Key knowledge/skills/covered less frequently; 30% of content; 20-30% of instructional time; fewer # of items on state assessment;

**Condensed:** Less important/least frequently; 20% of content; 10-20% of instructional time; reinforcement; extension/enrichment
# Geometry Curriculum Map Unit 2: Introduction to Geometric Concepts

**Time Frame:** 4 weeks
**September 14 to October 21, 2010**
**Edusoft Range:** 10-21 to 10-25

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence / Assessments of learning</th>
<th>Instructional Notes/Strategies</th>
<th>Differentiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>E</td>
<td>Form and test conjectures concerning geometric relationships including lines, angles, and polygons (i.e., triangles, quadrilaterals, and n-gons), with and without technology (G-1-H) (G-4-H) (G-6-H)</td>
<td>Section 1-1 Points, Lines, and Planes p. 6 – 11</td>
<td>For Remediation: 1. “Geometry in the real world” Scrapbook - students find examples of points, lines, planes, segments, rays, angles, etc. Keep the pictures in a scrapbook of some sort. They should write the name of the geometric term, trace it to show the geometric term, label it and write its name, and explain why it is the term they are describing. 2. LPSS Activity - “Chapter 1: Points, Lines, and Planes Tic-Tac-Toe” (posted on BB), DI menu selection to review terms from Chapter 1. 3. Complete activities using geoboards to assist students with identifying and naming points, lines, and planes. For Enrichment: 1. Have students use a digital camera to take pictures of real-world examples of points, lines, and planes. Students should use pictures to create a power-point presentation. Presentations can be used as a review tool for tests. 2. LPSS Activity - “Chapter 1: Points, Lines, and Planes Tic-Tac-Toe” (posted on BB), DI menu selection to review terms from Chapter 1. Technology Integration:</td>
</tr>
<tr>
<td>11</td>
<td>E</td>
<td>Determine angle measurements using the properties of parallel, perpendicular, and intersecting lines in a plane (G-2-H)</td>
<td>Using manipulative or visual aids like: index cards, pencils, spaghetti, straws to demonstrate intersections and two and three dimensional figures 1 day</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>E</td>
<td>Form and test conjectures concerning geometric relationships including lines, angles, and polygons (i.e., triangles,</td>
<td>Section 1-2 Linear Measure and Precision p. 13 – 19 Section 2-7 Proving Segment Relationships p. 101 – 106</td>
<td>For Remediation: 1. Measure everything! May want to use rulers to the nearest whole inch, half inch, fourth inch, etc. to demonstrate more about precision and practice measuring.</td>
</tr>
</tbody>
</table>

## Unit Description

This unit introduces students to general geometric concepts. Students begin with identifying the point and progressing through each figure that is created by adding additional points. The properties of these figures are then discussed and related. Measurement is then introduced with a discussion of accuracy, precision, and significant digits. Students will calculate the distance between two points and the midpoint of segments.

## Student Understandings

Students understand the basic geometric shapes and figures. Students learn how to distinguish between these shapes and figures and learn what properties make them unique. Students will also understand measurement using rulers, protractors, and other measuring devices.

## Re-teach low performing GLE’s from Unit 1Edusoft test

- Identify and name point, line & plane
- Define and use Collinear & coplanar
- Identify and name intersecting lines and plane
- Naming all figures

Can students identify, name and apply basic geometric terms?

- **Section 1-1 Points, Lines, and Planes** p. 6 – 11
- **Using manipulative or visual aids like:** index cards, pencils, spaghetti, straws to demonstrate intersections and two and three dimensional figures

For Remediation:

1. “Geometry in the real world” Scrapbook - students find examples of points, lines, planes, segments, rays, angles, etc. Keep the pictures in a scrapbook of some sort. They should write the name of the geometric term, trace it to show the geometric term, label it and write its name, and explain why it is the term they are describing.
2. LPSS Activity - “Chapter 1: Points, Lines, and Planes Tic-Tac-Toe” (posted on BB), DI menu selection to review terms from Chapter 1.
3. Complete activities using geoboards to assist students with identifying and naming points, lines, and planes.

For Enrichment:

1. Have students use a digital camera to take pictures of real-world examples of points, lines, and planes. Students should use pictures to create a power-point presentation. Presentations can be used as a review tool for tests.
2. LPSS Activity - “Chapter 1: Points, Lines, and Planes Tic-Tac-Toe” (posted on BB), DI menu selection to review terms from Chapter 1.

Technology Integration:

- Define and name segment.
- Accuracy, precision, and significant digits of measurements.
- Understand and use

For Remediation:

1. Measure everything! May want to use rulers to the nearest whole inch, half inch, fourth inch, etc. to demonstrate more about precision and practice measuring.
**Lafayette Parish School System**  
**Geometry Curriculum Map**  
**Unit 2: Introduction to Geometric Concepts**

**Time Frame:** 4 weeks  
**September 14 to October 21, 2010**  
**Edusoft Range 10-21 to 10-25**

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence / Assessments of learning</th>
<th>Instructional Notes/Strategies</th>
<th>Differentiation</th>
</tr>
</thead>
</table>
| 18    | E    | quadrilaterals, and n-gons), with and without technology (G-1-H) (G-4-H) (G-6-H)  
9th Grade GLE  
Demonstrate and explain how the scale of a measuring instrument determines the precision of that instrument (M-1-H)  
9th Grade GLE  
18th E  
Represent and solve problems involving distance on a number line or in the plane (G-3-H)  
9th Grade GLE  
16th E | congruent segments  
- Determine midpoint of a segment.  
- Understand and use the segment addition postulate.  
Can students identify congruent segments and use segment addition to find missing parts?  
Section 1-3 Distance and Midpoints p. 21 – 27  
**Unit 3 Activity 4**  
Use the Pythagorean theorem to find the distance between two points. | Students may be required to demonstrate an understanding of precision, accuracy and significant digits  
2 days | 2. Determine the student with the “most perfect body” using the golden ratio. Have students determine the ratios of these measurements:  
- ratio of (distance between elbow and wrist) to (distance between wrist and longest fingertip)  
- ratio of (longest part of finger from first knuckle to second knuckle) to (middle part of finger from second knuckle to third bendable part)  
- ratio of (height of person) to (distance between belly button and floor)  
Have students determine the average of their ratios; the student with the average closest to approximately 1.618... would be declared the student with the most perfect body. (Lesson idea compliments of Mary Lou Jumonville.) Also, the movie "Donald Duck in Math Magic Land" can be shown to explain more about the golden ratio.  
**For Enrichment:**  
1. Give students a printout of the school’s map. Have them measure the segments (all or certain portions of the school map). Have them make observations such as: Are most classrooms the same size (congruent segments)? If not, which classrooms are larger (smaller) and why do they think this is the case? Etc........  
2. Use the link below to access a wonderful lesson on calculating the number of lights needed to “Light the Perimeter” of a home or building for Christmas.  

**Essential:** Big ideas/covered most frequently; 50% of content; 60-70% of instructional time; high # of test items on state assessment; mastery in current year  
**Important:** Key knowledge/skills/covered less frequently; 30% of content; 20-30% of instructional time; fewer # of items on state assessment;  
**Condensed:** Less important/least frequently; 20% of content; 10-20% of instructional time; reinforcement; extension/enrichment
<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence / Assessments of learning</th>
<th>Instructional Notes/Strategies</th>
<th>Differentiation</th>
</tr>
</thead>
</table>
| 23    | E    | Use coordinate methods to solve and interpret problems (e.g., slope as rate of change, intercept as initial value, intersection as common solution, midpoint as equidistant) *(G-2-H) (G-3-H)* | 1 day | doing wrong.  
|       |      | *8th Grade GLE*  
| 23    | I    | Define and apply the terms measure, distance, midpoint, bisect, bisector, and perpendicular bisector *(G-2-M)* | formula | 2. Have students graph pairs of points on the coordinate plane and draw line segments connecting the points. After drawing each segment, have students hold the paper up to the light and fold the paper until both endpoints are directly on top of each other. From this activity, students should recognize that the midpoint is half way between the two points, thus gaining a visual of what the midpoint formula is.  
|       |      | *8th Grade GLE*  
| 10    | E    | Form and test conjectures concerning geometric relationships including lines, angles, and polygons (i.e., triangles, quadrilaterals, and *n*-gons), with and without technology *(G-1-H) (G-4-H) (G-6-H)* | Can student solve problems that deal with distance on the number line or in the coordinate plane? Show minor relation to Pythagorean theorem. | 1 day |
|       |      | *8th Grade GLE*  
| 23    | I    | Define and apply the terms measure, distance, midpoint, bisect, bisector, and perpendicular bisector *(G-2-M)* | Can students measure angles and | 1 day |
|       |      | *8th Grade GLE*  
|       |      |  
|       |      | *10th Grade GLE*  

**Technology Integration:**

**For Remediation:**

1. Continue Geometry scrapbook.
2. Measure lots of angles! Many students at this level are not comfortable with using protractors; therefore, it may be necessary to spend some time teaching them how to properly measure an angle using a protractor.
3. Break students up into small groups and have them work together to complete the LPSS Activity - "Understanding Angles Packet." (posted on BB)

Packet may be used for remediation throughout the unit (cover topics as they appear in the curriculum). Observe students closely as they construct angles to ensure that...
### Geometry Curriculum Map

**Unit 2: Introduction to Geometric Concepts**

**Time Frame:** 4 weeks  
**September 14 to October 21, 2010**  
**Edusoft Range:** 10-21 to 10-25

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence / Assessments of learning</th>
<th>Instructional Notes/Strategies</th>
<th>Differentiation</th>
</tr>
</thead>
</table>
| 10 E  | Form and test conjectures concerning geometric relationships including lines, angles, and polygons (i.e., triangles, quadrilaterals, and n-gons), with and without technology (G-1-H) (G-4-H) (G-6-H) | • Identify, define and label Adjacent, vertical, supplementary, and complementary angles  
 Linear pair  
 Parallel lines  
 Perpendicular lines  
 Skew lines  
 Angle congruence  
 • Use angle addition to solve problems  
 • Introduce theorems for supplementary, complementary, and vertical angles.  
 Can students identify, label and determine angles associated with intersecting lines?  
 Can students determine supplementary and complementary angles? | Sect. 1-5 Angle Relationships p. 37 – 43  
 Section 2-8 Proving Angle Relationships p. 107 – 114 | For Remediation:  
 1. Use the following link to assist struggling students or students who were absent during concept presentation. [http://www.mathexpression.com/angle-relationships.html](http://www.mathexpression.com/angle-relationships.html)  
 2. Use the following link as an interactive review of angle relationships. [http://www.quia.com/pop/36147.html](http://www.quia.com/pop/36147.html) | For Enrichment:  
 1. “What’s Your Slant?” Use the link below and have students complete the activity over a weekend. [http://astro.uchicago.edu/cara/southpole.edu/angle.html](http://astro.uchicago.edu/cara/southpole.edu/angle.html)  
 2. Geometer’s Sketchpad Activity on Investigating angles formed by intersecting lines (posted on BB); students may also use Cabri Jr. if Sketchpad is not available. | Technology Integration: |
| 11 E  | Determine angle measurements using the properties of parallel, perpendicular, and intersecting lines in a plane (G-2-H) | | Test ½ day | |

**Essential:** Big ideas/covered most frequently; 50% of content; 60-70% of instructional time; high # of test items on state assessment; mastery in current year

**Important:** Key knowledge/skills/covered less frequently; 30% of content; 20-30% of instructional time; fewer # of items on state assessment;

**Condensed:** Less important/least frequently; 20% of content; 10-20% of instructional time; reinforcement; extension/enrichment

---

**Technology Integration:**

- Test ½ day

---

**For Remediation:**

- Have students construct polyhedra using the link below. Before actual construction, have students record a
## Geometry Curriculum Map
### Unit 2: Introduction to Geometric Concepts

**Time Frame:** 4 weeks  
**September 14 to October 21, 2010**

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence / Assessments of learning</th>
<th>Instructional Notes/Strategies</th>
</tr>
</thead>
</table>
|       | lines, angles, and polygons (i.e., triangles, quadrilaterals, and n-gons), with and without technology (G-1-H) (G-4-H) (G-6-H) | polygon | geometric fact on each side. Students can refer back to their polyhedra as a review tool for mid-term exams. [http://www.math wichita.edu/history/activities/geometry-act.html#poly-act](http://www.math wichita.edu/history/activities/geometry-act.html#poly-act) 2. “Polygon Perimeters” use the following link as an activity to review perimeter calculation and polygon identification. [http://alex.state.al.us/lesson_view.php?id=24107](http://alex.state.al.us/lesson_view.php?id=24107)  
**For Enrichment:**  
1. Challenge students to construct regular polygons using straightedge and compass.  
2. Have students use the following link to construct a geometric textile quilt. Instruct students to use polygons only to construct the quilt. [http://www.math wichita.edu/history/activities/geometry-act.html#textile-act](http://www.math wichita.edu/history/activities/geometry-act.html#textile-act)  
**Technology Integration:** |
|       | polygon | 1 day | |
|       | Test ½ day | | |
|       | Unit test ½ day | | |
|       | Re-teach 1 day | | |

**Differentiation**

**Essential:** Big ideas/covered most frequently; 50% of content; 60-70% of instructional time; high # of test items on state assessment; mastery in current year

**Important:** Key knowledge/skills/covered less frequently; 30% of content; 20-30% of instructional time; fewer # of items on state assessment;

**Condensed:** Less important/least frequently; 20% of content; 10-20% of instructional time; reinforcement; extension/enrichment
### Geometry Curriculum Map

**Unit 3: Parallel, Perpendicular and Linear Relationships**

**Time Frame:** 4 weeks  
**October 22 to December 7, 2010**  
**Edusoft range:** 12-7 to 12-13

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence / Assessments of learning</th>
<th>Instructional Notes/Strategies</th>
<th>Differentiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>E</td>
<td>Determine angle measurements using the properties of parallel, perpendicular, and intersecting lines in a plane (G-2-H)</td>
<td>Section 3-1 Parallel Lines and Transversals p. 126 – 131</td>
<td>For Remediation: 1. The website can be used to review and/or quiz students on types of angles created with parallel lines and a transversal.</td>
</tr>
<tr>
<td>10</td>
<td>E</td>
<td>Form and test conjectures concerning geometric relationships including lines, angles, and polygons (i.e., triangles, quadrilaterals, and n-gons), with and without technology (G-1-H)(G-4-H)(G-6-H)</td>
<td>Section 3-2 Angles and Parallel Lines p. 133 – 138</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>I</td>
<td>Develop formal and informal proofs (e.g., Pythagorean theorem, flow charts, paragraphs) (G-6-H)</td>
<td>Section 3-5 Proving Lines Parallel p. 154 – 157</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Can students use parallelism to find and develop the basic angle measures formed by two lines in the plane and a transversal such as alternate interior, corresponding angles, and alternate exterior.</td>
<td>3.5 Discovering geometry p. 161</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proving lines parallel</td>
<td>Constructing parallel lines by folding patty paper.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>– May want to use Cabri and Patty Paper</td>
<td>– 2 ( \frac{1}{2} ) days</td>
<td></td>
</tr>
</tbody>
</table>

**Unit Description**

This unit demonstrates the basic role played by Euclid’s fifth postulate in geometry. Euclid’s fifth postulate is stated in most textbooks using the wording found in Playfair’s Axiom: *Through a given point, only one line can be drawn parallel to a given line.* This axiom and several others are considered by some mathematicians to be equivalent to Euclid’s fifth postulate. The focus is on basic angle measurement relationships for parallel and perpendicular lines, equations of lines that are parallel and perpendicular in the coordinate plane, and proving that two or more lines are parallel using various methods including distance between two lines. Additionally, students will understand concepts of line of best fit and finding solutions to real-life problems. Identify the difference between linear and non-linear data and then find the rule for generating the \( n \)th term in a sequence.

**Student Understandings**

Students should know the basic angle measurement relationships and slope relationships between parallel and perpendicular lines in the plane. Students can write and identify equations of lines that represent parallel and perpendicular lines. They can recognize the conditions that must exist for two or more lines to be parallel. Three-dimensional figures can be connected to their 2-dimensional counterparts when possible. Students will identify terms of a sequence by generating a rule for the \( n \)th term. Students recognize linear versus non-linear sets of data and can justify their reasoning.

**Essential:** Big ideas/covered most frequently; 50% of content; 60-70% of instructional time; high # of test items on state assessment; mastery in current year

**Important:** Key knowledge/skills/covered less frequently; 30% of content; 20-30% of instructional time; fewer # of items on state assessment;

**Condensed:** Less important/least frequently; 20% of content; 10-20% of instructional time; reinforcement; extension/enrichment
### Geometry Curriculum Map

**Unit 3: Parallel, Perpendicular and Linear Relationships**

**Time Frame:** 4 weeks  
**October 22 to December 7, 2010**  
**Edusoft range** 12-7 to 12-13

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence / Assessments of learning</th>
<th>Instructional Notes/Strategies</th>
<th>Differentiation</th>
</tr>
</thead>
</table>
| 10    | E    | Form and test conjectures concerning geometric relationships including lines, angles, and polygons (i.e., triangles, quadrilaterals, and n-gons), with and without technology (G-1-H) (G-4-H) (G-6-H) | • Determine the slope of a line  
• Can students determine the change in y / change in x | Test 1 ½ day | For Remediation:  
1. LPSS Activity - Slope (posted on BB)  
3. Wonderful lessons for reteaching slope and equations of lines. [http://mathforum.org/mathtools/cell/g,10.3.2,ALL,ALL/](http://mathforum.org/mathtools/cell/g,10.3.2,ALL,ALL/)  
4. LPSS Activity - Jeopardy Slope Game (posted on BB) This is a review game for slope and simple equations of lines.  
For Enrichment:  
1. LPSS Activity - Slope through Digital Pictures (posted on BB)  
2. LPSS Activity - Investigating Slope through Geometer’s Sketchpad (posted on BB)  
Technology Integration: |
| 6     | E    | Write the equation of a line parallel or perpendicular to a given line through a specific point (A-3-H) (G-3-H) Show or justify the correlation (match) between a linear or non-linear data set and a graph (D-2-H) (P-5-H) Also, Generalize and represent patterns symbolically, with and without technology (P-1-H) Translate among tabular, | • Write equations of lines within a family  
• Graphing of lines of parallel and perpendicular slopes  
• Writing equations of parallel or perpendicular lines to a given line through a specific point  
• Match linear or non-linear data and a graph | Section 3-4 Equations of Lines p. 145 – 149  
JBHM Algebra Unit 4: SBIL 3 “Linear Vs Non Linear relationships  
Unit 3 Activity 2 This suggested activity can use the equations of lines to make connections between parallel and perpendicular lines  
Unit 1 Activity 3 BLM -use graphing calculator to plot and determine if data is linear or non-linear | For Remediation:  
1. Use the following link as an interactive review of equations of lines. [http://www.quia.com/quiz/276086.html?AP_rand=1518666690](http://www.quia.com/quiz/276086.html?AP_rand=1518666690)  
3. Wonderful lessons for reteaching slope and equations of lines. [http://mathforum.org/mathtools/cell/g,10.3.2,ALL,ALL/](http://mathforum.org/mathtools/cell/g,10.3.2,ALL,ALL/)  
For Enrichment:  
1. Unit 1 Activity Specific Assessment, Activity 3  
2. LPSS Activity - What’s my line, revised (posted on |
# Lafayette Parish School System
## Geometry Curriculum Map
### Unit 3: Parallel, Perpendicular and Linear Relationships

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence / Assessments of learning</th>
<th>Instructional Notes/Strategies</th>
<th>Edusoft range 12-7 to 12-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>E 39</td>
<td>graphical, and symbolic representations of patterns in real-life situations, with and without technology (P-2-H)(P-3-H) (A-3-H) 9th Grade GLE</td>
<td>given the equations of lines that are perpendicular or parallel to a given line in the coordinate plane and discuss the slope relationships governing these situations? Can students link perpendicularity to angle measurements and to its relationship with parallelism in the plane?</td>
<td>Use Sketchpad or Capri to investigate parallel and perpendicular 3 days</td>
<td>Technology Integration: 1. <strong>LPSS Activity - “Ranger Lab”</strong> (posted on BB)</td>
</tr>
<tr>
<td>I 26</td>
<td>Generalize and represent patterns symbolically, with and without technology (P-1-H)</td>
<td>• Finding the nth term in a sequence  Can students determine the formula for finding the nth term in a linear data set?</td>
<td><strong>Unit 1 Activity 4 BLM</strong></td>
<td>For Remediation: 1. The following link contains explanations and activities related to finding the nth term in a sequence. The site also contains a test so that you can monitor student understanding throughout remediation. <a href="http://www.bbc.co.uk/schools/ks3bitesize/maths/algebra/linear_sequences/activity.shtml">http://www.bbc.co.uk/schools/ks3bitesize/maths/algebra/linear_sequences/activity.shtml</a> 2. Have students create numerical and geometrical patterns. The students would exchange patterns within their ability level group and determine the formula for the nth term of that sequence.</td>
</tr>
<tr>
<td>E 20</td>
<td>Show or justify the correlation (match) between a linear or non-linear data set and a graph(D-2-H) (P-5-H)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Time Frame:** 4 weeks  
**October 22 to December 7, 2010**  
**Technology Integration:**
- **LPSS Activity - “Ranger Lab”** (posted on BB)
- **Unit 1 Activity 4 BLM**
- **http://www.bbc.co.uk/schools/ks3bitesize/maths/algebra/linear_sequences/activity.shtml**
- For Remediation:
  1. The following link contains explanations and activities related to finding the nth term in a sequence. The site also contains a test so that you can monitor student understanding throughout remediation.
  2. Have students create numerical and geometrical patterns. The students would exchange patterns within their ability level group and determine the formula for the nth term of that sequence.
- For Enrichment:
  1. Have students read through and work the exercises in *Discovering Geometry* Section 2.4, Mathematical Modeling.
  2. Have students create numerical and geometrical patterns. These students may also want to include some patterns which are non-linear. The students would exchange patterns within their ability level group and determine the formula for the nth term of that sequence.

**Essential:** Big ideas/covered most frequently; 50% of content; 60-70% of instructional time; high # of test items on state assessment; mastery in current year  
**Important:** Key knowledge/skills/covered less frequently; 30% of content; 20-30% of instructional time; fewer # of items on state assessment;  
**Condensed:** Less important/least frequently; 20% of content; 10-20% of instructional time; reinforcement; extension/enrichment

3
## Lafayette Parish School System
Geometry Curriculum Map
**Unit 3: Parallel, Perpendicular and Linear Relationships**

**Time Frame:** 4 weeks  
**October 22 to December 7, 2010**

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence / Assessments of learning</th>
<th>Instructional Notes/Strategies</th>
<th>Differentiation</th>
</tr>
</thead>
</table>
| 5 E   | Write the equation of a line of best fit for a set of 2-variable real-life data presented in table or scatter plot form, with or without technology (A-2-H) (D-2-H) | **JBHM Algebra Unit 4: SBIL 2** Students should create scatter plots from real life data. Illuminations have data sets. **Addendum #1** (posted on BB) **LPSS Activity - “Scatterplot Activity with Music”** (posted on BB) | **For Remediation:**  
1. Use applet from the link below to assist students with plotting points on the coordinate plane and visualizing what the line of best fit truly is.  
   [http://mste.illinois.edu/users/carvell/PlotPoints/default.html](http://mste.illinois.edu/users/carvell/PlotPoints/default.html)  
2. Practice, practice, practice - plotting points and approximating the line of best fit. Use the link below to teach students 2 basic methods of approximating the line of best fit without the use of a calculator (area method and diving method).  
   [http://serc.carleton.edu/mathyouneed/bestfit.html](http://serc.carleton.edu/mathyouneed/bestfit.html)  
**For Enrichment:**  
1. Have students choose a Fortune 500 company and research their profits and losses from 20 to 30 years ago. Students should then complete a scatter plot and find the line of best fit. Students should make predictions about their current profits and losses based the data collected. They should write an equation for the line of best fit and then test it with current data to find out if their predictions were correct.  
2. Have students complete activity “Now That’s Using Your Head” to find out if the size of their head is related to how far they can jump. Use the link below.  
1. 2nd part of Activity 3 from Unit 1  
2. LPSS Resource - Scatterplot Instructions (posted on BB)  
| 22 E  | Interpret and summarize a set of experimental data presented in a table, bar graph, line graph, scatter plot, matrix, or circle graph (D-7-H) | Can students write equations of the line of best fit from a set of data, table or scatter plot form? Can students interpret and summarize a set of experimental data presented in a table or line graph? | |

Test ½ day  
Unit 3 test ½ day

---

**Essential:** Big ideas/covered most frequently; 50% of content; 60-70% of instructional time; high # of test items on state assessment; mastery in current year  
**Important:** Key knowledge/skills/covered less frequently; 30% of content; 20-30% of instructional time; fewer # of items on state assessment;  
**Condensed:** Less important/least frequently; 20% of content; 10-20% of instructional time; reinforcement; extension/enrichment
## Unit Description
This unit introduces the definitions of special segments in triangles and classic theorems that develop the total concept of a triangle. Right triangle concepts are introduced including Pythagorean Theorem, special right triangles, and trigonometric ratios. Area of triangles is also introduced with the use of altitudes.

### Student Understandings
Students should know defining properties and basic relationships for all forms of triangles. They should also have the ability to discuss and apply the congruence postulates and theorems and compare and contrast them with their similarity counterparts. Students should be able to apply basic classical theorems such as the Isosceles Triangle theorem, Triangle Inequality theorem, Pythagorean theorem. They will use Pythagorean theorem, properties of special right triangles, and trigonometric ratios to find the length of missing sides and angles of right triangles. Students then may use their knowledge of triangles to find the perimeter and area of triangles.

## Re-teach low performing GLE’s from Unit 3 Edusoft test

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence / Assessments of learning</th>
<th>Instructional Notes/Strategies</th>
<th>Differentiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 E</td>
<td>Form and test conjectures concerning geometric relationships including lines, angles, and polygons (i.e., triangles, quadrilaterals, and $n$-gons), with and without technology (G-1-H) (G-4-H) (G-6-H)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Identify and classify triangles by sides and angles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Apply the angle sum theorem and exterior angle theorem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Apply properties of isosceles and equilateral triangles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Can students identify and classify triangles by sides and angles?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Can students apply properties of triangles to find missing angle and side measures?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Can students apply basic theorems such as: angle sum theorem, exterior angle theorem, and isosceles triangle theorem?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section 4-1 Classifying Triangles p. 178 – 183</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section 4-2 Angles of Triangles p. 185 – 191</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section 4-6 Isosceles Triangles p. 216 – 221</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit 4, Activity 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geometry Activity (Glencoe Textbook): Angles of Triangles p. 184</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 days</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 E</td>
<td>Form and test conjectures concerning geometric relationships including lines, angles, and polygons (i.e., triangles, quadrilaterals, and $n$-gons), with and without technology (G-1-H) (G-4-H) (G-6-H)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Recognize and apply properties of exterior angle inequality theorem and triangle inequality theorem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Can students determine triangle inequality properties?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section 5-2 Inequalities and Triangles p. 247 – 254</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section 5-4 The Triangle Inequality Theorem p. 261 - 266</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit 4, Activity 11 (BLM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit 4, Activity 12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit 4, Activity 13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Supplemental activity: use uncooked spaghetti noodles to illustrate triangle inequality theorem.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 days</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Test 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>½ day</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Test 2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Essential:** Big ideas/covered most frequently; 50% of content; 60-70% of instructional time; high # of test items on state assessment; mastery in current year

**Important:** Key knowledge/skills/covered less frequently; 30% of content; 20-30% of instructional time; fewer # of items on state assessment;

**Condensed:** Less important/least frequently; 20% of content; 10-20% of instructional time; reinforcement; extension/enrichment
<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence / Assessments of learning</th>
<th>Instructional Notes/Strategies</th>
<th>Differentiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>E</td>
<td>Form and test conjectures concerning geometric relationships including lines, angles, and polygons (i.e., triangles, quadrilaterals, and n-gons), with and without technology (G-1-H) (G-4-H) (G-6-H)</td>
<td>• Identify and use properties of perpendicular bisectors, angle bisectors, medians, and altitudes to compute missing segment measurements Can students construct the special segments of a triangle and apply their properties?</td>
<td>Section 5-1 Bisectors, Medians, and Altitudes p. 238 – 245 Unit 4, Activities 7, 8, 9 NOT DIRECTLY TESTED ON GEE. Go in depth based on time. If time is short, use Geometer's Sketchpad or similar program to draw bisectors, median, and altitudes instead of drawing by hand.</td>
</tr>
<tr>
<td>10</td>
<td>E</td>
<td>Form and test conjectures concerning geometric relationships including lines, angles, and polygons (i.e., triangles, quadrilaterals, and n-gons), with and without technology (G-1-H) (G-4-H) (G-6-H)</td>
<td>• Find area of triangles • Find area of triangles on the coordinate plane Can students find the area of triangles on and off of the coordinate plane?</td>
<td>Section 11-2 Areas of Triangles p. 601-604 NOTE: Although trapezoids and rhombi are covered in this section, focus on triangles only because trapezoids and rhombi are covered in Unit 5.</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>Simplify and determine the value of radical expressions (N-2-H)(N-7-H) Develop formal and informal proofs (e.g., Pythagorean theorem, flow charts, paragraphs) (G-6-H)</td>
<td>• Simplify radicals including rationalizing the denominator • Use Pythagorean Theorem to find missing sides and angles of right triangles Can students express radicals in exact and approximate form? Can students solve real-world problems by applying the Pythagorean Theorem?</td>
<td>Square Roots and Simplifying Radicals p. 744 – 745 Section 7-2 The Pythagorean Theorem and Its Converse p. 350 – p. 356 Unit 5, Activities 9 &amp; 10 Geometry Activity (Glencoe Textbook): The Pythagorean Theorem p. 349 NOTE: Rationalizing the denominator of a radical is NOT DIRECTLY TESTED ON THE GEE; however, when solving 30-60-90 triangles on the End-of-Course test students will have to apply</td>
</tr>
<tr>
<td>GLE #</td>
<td>GLEs</td>
<td>Evidence / Assessments of learning</td>
<td>Instructional Notes/Strategies</td>
<td>Differentiation</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>-----------------------------------</td>
<td>-------------------------------</td>
<td>-----------------</td>
</tr>
</tbody>
</table>
| 10 E  | Form and test conjectures concerning geometric relationships including lines, angles, and polygons (i.e., triangles, quadrilaterals, and n-gons), with and without technology (G-1-H) (G-4-H) (G-6-H) Also, #1, 12 | • Apply properties of $45^\circ - 45^\circ - 90^\circ$ and $30^\circ - 60^\circ - 90^\circ$ triangles to find missing sides and angles  
• Apply properties of $45^\circ - 45^\circ - 90^\circ$ and $30^\circ - 60^\circ - 90^\circ$ triangles to find missing sides and angles on the coordinate plane  
Can students apply properties of special right triangles to find missing sides and angles on and off of the coordinate plane? | Section 7-3 Special Right Triangles p. 357 – 363 | this skill.  
2 days |
| 18 E  | Determine angle measures and side lengths of right and similar triangles using trigonometric ratios and properties of similarity, including congruence (G-5-H) (M-4-H) Also, #3, 8, 12 | • Use trigonometric ratios (sine, cosine, tangent) to find missing sides and angles of right triangles  
Can students use sine, cosine, and tangent to find the measures of missing sides and angles of right triangles? | Section 7-4 Trigonometry p. 364 – 370 | Test 4  
½ day |
| 8 I   | Model and use trigonometric ratios to solve problems involving right triangles (M-4-H) (N-6-H) Also, #3, 12, 18 | • Solve real-world problems involving angle of elevation and angle of depression  
Can students use angle of elevation and depression to solve real-world application problems? | Section 7-5 Angles of Elevation and Depression p. 371 – 376 | Test 5  
2 days |
| 10 E  | Form and test conjectures concerning geometric relationships including lines, angles, and polygons (i.e., triangles, quadrilaterals, and n-gons), with and without technology (G-1-H) (G-4-H) Also, #1, 12 | • Name and label corresponding parts of congruent triangles  
Can students illustrate the basic properties and relationships tied to congruence?  
Can students draw and use figures to justify arguments and conjectures about congruence? | Section 4-3 Congruent Triangles p. 192-198 |  
Unit 3, Activity 2  
Unit 3, Activity 3 |
**Lafayette Parish School System**  
**Geometry Curriculum Map**  
**Unit 4: Triangles and Trigonometry**

**Time Frame:** 7 weeks  
**January 3, 2011 to February 24, 2011**  
**Edusoft Range:** 2-24 to 3-2

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence / Assessments of learning</th>
<th>Instructional Notes/Strategies</th>
<th>Differentiation</th>
</tr>
</thead>
</table>
| 10    | H) (G-6-H)  
Form and test conjectures concerning geometric relationships including lines, angles, and polygons (i.e., triangles, quadrilaterals, and n-gons), with and without technology (G-1-H) (G-4-H) (G-6-H)  
|  
• Use SSS, SAS, ASA Postulates and AAS Theorem to test for triangle congruence  
Can students state and apply classic theorems about triangles, based on congruence?  
Can students illustrate the basic properties and relationships tied to congruence?  
Can students draw and use figures to justify arguments and conjectures about congruence?  
| Section 4-4 Proving Congruence – SSS, SAS  
p. 200 – 206  
Section 4-5 Proving Congruence – ASA, AAS  
p. 207 – 213  
| Unit 4, Activity 4  
Unit 4, Activity 5  
Unit 4, Activity 6 (BLM)(optional) – use  
Activity 6 based on time and level of students  
Unit 4, Activity 10  
Geometry Activity (Glencoe Textbook): Congruence in Right Triangles (optional)  
p. 214 – 215  
NOTE: NOT DIRECTLY TESTED ON GEE  
Emphasize this lesson based on level of students.  
1 day  
| ½ day |
|  |  | Test 6  
|  |  | ½ day |
|  |  | Unit 4 Test  
|  |  | ½ day |

**Essential:** Big ideas/covered most frequently; 50% of content; 60-70% of instructional time; high # of test items on state assessment; mastery in current year  
**Important:** Key knowledge/skills/covered less frequently; 30% of content; 20-30% of instructional time; fewer # of items on state assessment;  
**Condensed:** Less important/least frequently; 20% of content; 10-20% of instructional time; reinforcement; extension/enrichment
Unit Description
The focus in this unit is on quadrilaterals and the properties of special quadrilaterals (parallelograms, trapezoids, and kites). The area and perimeter of quadrilaterals are introduced followed by discussions on the area of regular and irregular polygons. Circle area and circumference are introduced. The unit concludes with geometric probability.

Student Understandings
Students should know defining properties and basic relationships for all quadrilaterals. The students should be able to identify properties of polygons (regular and irregular) and determine perimeter and area. The students should also be able to identify properties of a circle and determine circumference and area. In the process, students will understand unit conversions. Students will use the concept of area to determine area of irregular figures, shaded regions, and geometric probability.

Re-teach low performing GLE’s from Unit 4 Edusoft test

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence / Assessments of learning</th>
<th>Instructional Notes/Strategies</th>
<th>Differentiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Form and test conjectures concerning geometric relationships including lines, angles, and polygons (i.e., triangles, quadrilaterals, and n-gons), with and without technology (G-1-H) (G-4-H) (G-6-H) Also, #23</td>
<td>• Identify and classify quadrilaterals o General quadrilaterals o Parallellograms • Rectangles • Rhombi • Squares o Trapezoids • Isosceles trapezoid o Kites Can students identify and classify quadrilaterals?</td>
<td></td>
<td>TESTED Unit 4 Activity 17 BLM (good for review or closure)</td>
</tr>
<tr>
<td>10</td>
<td>Form and test conjectures concerning geometric relationships including lines, angles, and polygons (i.e., triangles, quadrilaterals, and n-gons), with and without technology (G-1-H) (G-4-H) (G-6-H) Also, #23</td>
<td>• Recognize and apply the properties of the quadrilaterals listed above including o Side relationships o Angle relationships o Diagonal relationships Can students determine the appropriate name of a quadrilateral given specific properties of the figure? Can students apply properties of quadrilaterals to find missing angle and side measures?</td>
<td>Section 8-2 Parallelograms p. 411 – 416 Section 8-3 Test for Parallelograms p. 417 – 423 Section 8-4 Rectangles p. 424 – 430 Section 8-5 Rhombi and Squares p. 431 – 437 Geometry Activity: Kites p. 438 Section 8.6 Trapezoids p. 439-445</td>
<td>TESTED Unit 4 Activity 15 BLM; Unit 4 Specific Assessment Activity 15 Unit 4 Activity 16 uses slope and distance to classify quadrilaterals</td>
</tr>
<tr>
<td>10</td>
<td>Form and test conjectures</td>
<td>• Calculate perimeter and area of</td>
<td>Section 11-1 Area of Parallelograms p. 595 – 597</td>
<td>Test 1 or Alternate Assessment Unit 6 Activity-Specific</td>
</tr>
</tbody>
</table>

Essential: Big ideas/covered most frequently; 50% of content; 60-70% of instructional time; high # of test items on state assessment; mastery in current year
Important: Key knowledge/skills/covered less frequently; 30% of content; 20-30% of instructional time; fewer # of items on state assessment;
Condensed: Less important/least frequently; 20% of content; 10-20% of instructional time; reinforcement; extension/enrichment
### Lafayette Parish School System
#### Geometry Curriculum Map

**Unit 5: Quadrilaterals and Other Figures**

**Time Frame:** 4 weeks  
February 25 to March 22, 2011  
Edusoft Range: 3-22 to 3-28

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence / Assessments of learning</th>
<th>Instructional Notes/Strategies</th>
<th>Differentiation</th>
</tr>
</thead>
</table>
| **E** | concerning geometric relationships including lines, angles, and polygons (i.e., triangles, quadrilaterals, and n-gons), with and without technology (G-1-H) (G-4-H) (G-6-H) | quadrilaterals including  
  - parallelograms  
  - rectangles  
  - squares  
  - trapezoids | Section 11-2 Areas of Triangles, Trapezoids, and Rhombi p. 601 – 604  
Caution: exercises in these sections may contain problems involving special right triangles and/or trigonometry.  
Within word problems, convert linear units or square units appropriately. | Assessment, Activity 1 |
| **10** | Form and test conjectures concerning geometric relationships including lines, angles, and polygons (i.e., triangles, quadrilaterals, and n-gons), with and without technology (G-1-H) (G-4-H) (G-6-H) | • Calculate the perimeter and area of regular polygons  
• Calculate circumference and area of circles  
Can students determine the perimeters and areas of regular polygons?  
Can students provide an argument for the value of \( \pi \)? | Section 11-3 Area of Regular Polygons and Circles p. 610 – 612  
Note: Review names of polygons, convex, concave, etc from Unit 1  
Section 10-1 Circles and Circumference p.522 – 528  
Caution: exercises in these sections may contain problems involving special right triangles and/or trigonometry. | Unit 6 Activity 2 |
| **10** | Form and test conjectures concerning geometric relationships including lines, angles, and polygons (i.e., triangles, quadrilaterals, and n-gons), with and without technology (G-1-H) (G-4-H) (G-6-H) | • Calculate the area of irregular shapes  
• Calculate the area of shaded regions  
• Calculate the geometric probability of  
  - Hitting shaded region  
  - Choosing at random  
  - Etc.  
Can students determine the areas of irregular figures?  
Can students apply the concepts of geometric probability? | Section 11-3 Area of Regular Polygons and Circles p. 610 – 612  
Section 11-4 Areas of Irregular Figures p. 617 – 618  
Section 11-5 Geometric Probability p. 622 – 627  
Note: Keep it simple! | Unit 6 Activity 11 |

**Essential:** Big ideas/covered most frequently; 50% of content; 60-70% of instructional time; high # of test items on state assessment; mastery in current year  
**Important:** Key knowledge/skills/covered less frequently; 30% of content; 20-30% of instructional time; fewer # of items on state assessment;  
**Condensed:** Less important/least frequently; 20% of content; 10-20% of instructional time; reinforcement; extension/enrichment
<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence / Assessments of learning</th>
<th>Instructional Notes/Strategies</th>
<th>Differentiation</th>
</tr>
</thead>
</table>
| 10    | Form and test conjectures concerning geometric relationships including lines, angles, and polygons (i.e., triangles, quadrilaterals, and \( n \)-gons), with and without technology (G-1-H) (G-4-H) (G-6-H) | • Determine the sum of the measures of the interior angles of a polygon.  
• Determine the sum of the measures of the exterior angles of a polygon.  
Can students use counting techniques with patterns to determine the number of diagonals and the sums of angles in polygons? | Section 8-1 Angles of Polygons p. 404 – 409 | Note: not directly tested on GEE  
Unit 1 Activity 6  
LPSS Addendum #1  
Note: #2 from this addendum is an activity to show the pattern of the interior angle sum theorem; #1 and #3 from this addendum are other linear patterns that may be used as review.  
1 day  
Test 3  
½ day  
Unit Test  
½ day |
Lafayette Parish School System  
Geometry Curriculum  
Unit 6: Proportional Reasoning, Similarity, and Transformations

Time Frame: 4 Weeks  
March 23 to April 20, 2011  
Edusoft Range 4-20 to 4-27

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLE’s</th>
<th>Evidence / Assessments of learning</th>
<th>Instructional Notes/Strategies</th>
<th>Differentiation</th>
</tr>
</thead>
</table>
| 4 E   | Use ratios and proportional reasoning to solve a variety of real-life problems including similar figures and scale drawings (N-6-H) (M-4-H) Also, #1, 2 | • Express ratios using various ratio notation (ex. 4:2, 4 to 2, 4/2)  
• Solve general proportions  
• Use proportions to solve problems involving rates (mph)  
• Compute actual distance based on scales  
• Use ratios to convert measurements | Section 6-1 Proportions p. 282 – 287 | Unit 5, Activity 2 (BLM)  
Use real world situations to teach proportional reasoning |
| 10 E  | Form and test conjectures concerning geometric relationships including lines, angles, and polygons (i.e., triangles, quadrilaterals, and n-gons), with and without technology (G-1-H) (G-4-H) (G-6-H) | • Identify similar polygons  
• Use ratios to determine scale factor  
• Use proportions to find missing side measurements of similar polygons  
• Write similarity statements for similar figures | Section 6-2 Similar Polygons p. 289 – 297 | Unit 5, Activity 3 |

**Unit Description**
This unit addresses the measurement side of the similarity relations, proportional reasoning and transformations including dilations, translations, rotations, and reflections.

**Student Understandings**
Students apply their knowledge of similar figures to various geometric shapes using proportional reasoning to find the measure of missing parts. Students will then determine what transformations can be performed on a figure and determine a composition of transformations that can be performed to mimic other transformations. They will also find new coordinates for transformations without actually performing the indicated transformation.

**Due to limited time, this unit should be covered prior to testing via Focus and Bell-ringer activities**

<table>
<thead>
<tr>
<th>Activity</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 4 E Use ratios and proportional reasoning to solve a variety of real-life problems including similar figures and scale drawings (N-6-H) (M-4-H) Also, #1, 2 | • Express ratios using various ratio notation (ex. 4:2, 4 to 2, 4/2)  
• Solve general proportions  
• Use proportions to solve problems involving rates (mph)  
• Compute actual distance based on scales  
• Use ratios to convert measurements | Section 6-1 Proportions p. 282 – 287 |
| 10 E Form and test conjectures concerning geometric relationships including lines, angles, and polygons (i.e., triangles, quadrilaterals, and n-gons), with and without technology (G-1-H) (G-4-H) (G-6-H) | • Identify similar polygons  
• Use ratios to determine scale factor  
• Use proportions to find missing side measurements of similar polygons  
• Write similarity statements for similar figures | Section 6-2 Similar Polygons p. 289 – 297 |

---

**Essential:** Big ideas/covered most frequently; 50% of content; 60-70% of instructional time; high # of test items on state assessment; mastery in current year  
**Important:** Key knowledge/skills/covered less frequently; 30% of content; 20-30% of instructional time; fewer # of items on state assessment;  
**Condensed:** Less important/least frequently; 20% of content; 10-20% of instructional time; reinforcement; extension/enrichment
## Geometry Curriculum
### Unit 6: Proportional Reasoning, Similarity, and Transformations

**Time Frame:** 4 Weeks  
**March 23 to April 20, 2011**  
**Edusoft Range:** 4-20 to 4-27

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLE’s</th>
<th>Evidence / Assessments of learning</th>
<th>Instructional Notes/Strategies</th>
<th>Differentiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 E</td>
<td>Form and test conjectures concerning geometric relationships including lines, angles, and polygons (i.e., triangles, quadrilaterals, and n-gons), with and without technology (G-1-H) (G-4-H) (G-6-H)</td>
<td>of missing sides of similar polygons and identify scale factors? Can students develop and prove conjectures related to similarity? Can students use figures to justify arguments and conjectures about similarity?</td>
<td>Section 6-3 Similar Triangles p. 298 – 306</td>
<td>2 days</td>
</tr>
</tbody>
</table>
| 10 E  | Form and test conjectures concerning geometric relationships including lines, angles, and polygons (i.e., triangles, quadrilaterals, and n-gons), with and without technology (G-1-H) (G-4-H) (G-6-H)Also, #4, 18 | • Identify similar triangles  
• Use properties of similar triangles to find missing side measurements  
Can students illustrate the basic properties and relationships tied to similarity? Can students use figures to justify arguments and conjectures about similarity? Can students state and apply classic theorems about triangles, based on similarity? | Section 6-4 Parallel Lines and Proportional Parts p. 307 – 315 | Unit 5, Activity 7 |
| 14    | Develop and apply coordinate rules for | • Draw reflected images  
• Recognize and draw line of reflection, line | Section 9-1 Reflections p. 463 – 469 | 1 day |

**Instructional Notes/Strategies**

- **Essential:** Big ideas/covered most frequently; 50% of content; 60-70% of instructional time; high # of test items on state assessment; mastery in current year
- **Important:** Key knowledge/skills/covered less frequently; 30% of content; 20-30% of instructional time; fewer # of items on state assessment;
- **Condensed:** Less important/least frequently; 20% of content; 10-20% of instructional time; reinforcement; extension/enrichment
## Lafayette Parish School System
### Geometry Curriculum
#### Unit 6: Proportional Reasoning, Similarity, and Transformations

**Time Frame:** 4 Weeks  
**March 23 to April 20, 2011**  
**Edusoft Range:** 4-20 to 4-27

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLE’s</th>
<th>Evidence / Assessments of learning</th>
<th>Instructional Notes/Strategies</th>
<th>Differentiation</th>
</tr>
</thead>
</table>
| E     | translations and reflections of geometric figures (G-3-H) | of symmetry and point of symmetry  
- Find coordinates of reflected images on the coordinate plane  
Can students draw reflected images?  
Can students recognize and draw line of reflection, line of symmetry, and point of symmetry?  
Can students find coordinates of reflected images on the coordinate plane? | located at the end of Unit 8  
Use leaf project or cookie cutter activity | ½ day |
| 14    | Develop and apply coordinate rules for translations and reflections of geometric figures (G-3-H) |  
- Draw translated images by performing translations for the given coordinates  
- Draw translated images by using repeated reflections  
Can students draw translated images?  
Can students use repeated reflections to draw images? | Section 9-2 Translations  
p. 470 – 475 | Unit 8, Activity 5  
Use leaf project or cookie cutter activity | ½ day |
| 14    | Develop and apply coordinate rules for translations and reflections of geometric figures (G-3-H) |  
- Draw rotated images using the angle of rotation  
- Identify figures with rotational symmetry  
Can students use the angle of rotation to draw rotated images?  
Can students identify figures with rotational symmetry? | Section 9-3 Rotations  
p. 476 – 482 | Unit 8, Activity 4  
contains specific assessment located at the end of Unit 8  
Use leaf project or cookie cutter activity | ½ day |
| 15    | Draw or use other methods, including technology, to illustrate dilations of geometric figures (G-3-H) |  
- Determine whether a dilation is an enlargement, reduction, or congruence transformation  
- Determine the scale factor for given dilations  
Can students use a dilation to determine if it is an enlargement, reduction, or congruence transformation? | Section 9-5 Dilations  
p. 490 – 497 | Unit 8, Activity 6  
Unit 8, Activity 7  
Use leaf project or cookie cutter activity | ½ day |

**Essential:** Big ideas/covered most frequently; 50% of content; 60-70% of instructional time; high # of test items on state assessment; mastery in current year  
**Important:** Key knowledge/skills/covered less frequently; 30% of content; 20-30% of instructional time; fewer # of items on state assessment;  
**Condensed:** Less important/least frequently; 20% of content; 10-20% of instructional time; reinforcement; extension/enrichment
<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLE’s</th>
<th>Evidence / Assessments of learning</th>
<th>Instructional Notes/Strategies</th>
<th>Differentiation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Can students determine scale factor for dilations?</td>
<td>Test 4 OR Alternate Assessment</td>
<td>Unit 8, Activity 8 located under activity-specific assessments at the end of Unit 8 (Refer to Section 9-4 Tessellations p. 483 – 489 for further assistance with the completion of Unit 8, Activity 8)</td>
<td>½ day</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit 6 Test</td>
<td></td>
<td></td>
<td>½ day</td>
</tr>
</tbody>
</table>

Essential: Big ideas/covered most frequently; 50% of content; 60-70% of instructional time; high # of test items on state assessment; mastery in current year

Important: Key knowledge/skills/covered less frequently; 30% of content; 20-30% of instructional time; fewer # of items on state assessment;

Condensed: Less important/least frequently; 20% of content; 10-20% of instructional time; reinforcement; extension/enrichment
# Lafayette Parish School System
## Geometry Curriculum Map
### Unit 7: Surface Area and Volume

**Time Frame:** 2 weeks

**April 21 to May 11, 2011**

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence / Assessments of learning</th>
<th>Instructional Notes/Strategies</th>
<th>Differentiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>E</td>
<td>Find the volume and surface area of pyramids, spheres, and cones (M-3-H) (M-4-H)</td>
<td>Section 12-1 Three-Dimensional Figures p. 636 – 642</td>
<td>½ day</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>Construct 2- and 3-dimensional figures when given the name, description, or attributes, with and without technology (G-1-H) Also, #10, 12, 19</td>
<td>Section 12-2 Nets and Surface Area p. 643 – 648</td>
<td>Unit 6 Activity 6</td>
</tr>
<tr>
<td>7</td>
<td>E</td>
<td>Find the volume and surface area of pyramids, spheres, and cones (M-3-H) (M-4-H)</td>
<td>Section 12-3 Surface Area of Prisms p. 649 – 654</td>
<td>Unit 6 Activity 7</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>Determine the surface area of prisms and cylinders</td>
<td>Section 12-4 Surface Area of Cylinders p. 655 – 659</td>
<td>Unit 7 Activity 13 BLM</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>Identify and calculate slant heights of pyramids and cones</td>
<td>Section 12-5 Surface Area of Pyramids p. 660 – 662</td>
<td>1 day</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>Determine the surface area of pyramids and cones</td>
<td>Section 12-6 Surface Area of Cones p. 666 – 670</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>Determine the surface area of spheres</td>
<td>Section 12-7 Surface Area of Spheres p. 671 – 676</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>Can students use the surface area formulas for prisms, cylinders, pyramids, cones, and spheres?</td>
<td>Caution: exercises in these sections may contain</td>
<td></td>
</tr>
</tbody>
</table>

### Unit Description
This unit applies measurement in geometry to 3-dimensional figures. The concept of area is extended to develop the concepts of surface area and volume. Building of 3-dimensional figures from a net is utilized to investigate surface area and volume formulas.

### Student Understandings
Students understand that measurement is a choice of unit, an application of that unit to the object to be measured, a counting of the units, and a reporting of the measurement. Students should have a solid understanding of polygons and polyhedra and the reasons pyramids and cones have a factor of $\frac{1}{3}$ in their formulas.

---

**Essential:** Big ideas/covered most frequently; 50% of content; 60-70% of instructional time; high # of test items on state assessment; mastery in current year

**Important:** Key knowledge/skills/covered less frequently; 30% of content; 20-30% of instructional time; fewer # of items on state assessment;

**Condensed:** Less important/least frequently; 20% of content; 10-20% of instructional time; reinforcement; extension/enrichment
## Time Frame: 2 weeks  
### April 21 to May 11, 2011

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence / Assessments of learning</th>
<th>Instructional Notes/Strategies</th>
<th>Differentiation</th>
</tr>
</thead>
</table>
| 7 E   | Find the volume and surface area of pyramids, spheres, and cones (M-3-H) (M-4-H) | Can students find distance in 3-dimensional space (slant height, etc.) using the Pythagorean theorem? | problems involving special right triangles and/or trigonometry. | Unit 6 Activity 3  
Unit 6 Activity 4  
Unit 6 Activity 5  
Unit 6 Activity-Specific Assessment, Activity 6  
Unit 6 Activity 8  
Unit 6 Activity 9  
Unit 6 Activity 10  
Unit 6 Activity-Specific Assessment, Activity 10  
Unit 7 Activity 14  
Unit 7 Activity-Specific Assessment, Activity 14 |
|       |      | • Identify and calculate the area of the base of prisms, cylinders, pyramids, and cones.  
• Identify and calculate the height of prisms, cylinders, pyramids, and cones.  
• Determine the volume of  
  o Prisms  
  o Cylinders  
• Determine the volume of  
  o Pyramids  
  o Cones  
• Determine the volume of spheres. | Section 13-1 Volumes of Prisms and Cylinders p. 688 – 694  
Section 13-2 Volumes of Pyramids and Cones p. 696 – 698  
Section 13-3 Volumes of Spheres p. 702 – 706  
Caution: exercises in these sections may contain problems involving special right triangles and/or trigonometry.  
Within word problems, convert linear units or cubic units appropriately. | 1 day |
|       |      | Can students define and use the concept of volume being the area of the base times the height (V = Bh)?  
Can students use the volume formulas for prisms, cylinders, pyramids, cones, and spheres? | | |
|       |      | Test 1 | ½ day |
|       |      | Unit test | ½ day |
### Unit Description

This unit focuses on justifications for circular measurement relationships in two dimensions, as well as the relationships dealing with measures of arcs, chords, secants, and tangents related to a circle. It also provides a review of formulas for determining the circumference and area of circles.

### Student Understandings

Students can apply the relationship of the measures of minor and major arcs to the measures of central angles and inscribed angles, and to the circumference in various situations. They can also explain the relevance of tangents in real-life situations and the power of a point relationship for intersecting chords.

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence / Assessments of learning</th>
<th>Instructional Notes/Strategies</th>
<th>Differentiation</th>
</tr>
</thead>
</table>
| 13 I  | Solve problems and determine measurements involving chords, radii, **arcs, angles**, secants, and tangents of a circle (G-2-H) | • Recognize, name, and determine the measures of  
  o major arcs  
  o minor arcs  
  o Semicircles  
  o Central angles  
  • Determine the arc length of major and minor arcs and semicircles.  
  • Circle graph  
  Can students find, name, and identify the parts of circle including major arcs, minor arc, central angles…etc.? | Section 10-1 Circles and Circumference p.522 – 528  
Note: Review terms and formulas of circles from Section 10-1.  
Section 10-2 Angles and Arcs p. 529 - 535 | Unit 7 Activity 1 BLM  
Unit 7 Activity 4 BLM |
| 13 I  | Solve problems and determine measurements involving **chords, radii, arcs, angles**, secants, and tangents of a circle (G-2-H) | • Recognize and use the relationships between arcs and chords  
  • Recognize and use the relationships between chords and diameters  
  • Recognize the differences between inscribed and circumscribed shapes.  
  Can students recognize and use the relationships between arcs and chords and between chords and diameters? | Section 10-3 Arcs and Circles p. 536 – 543 | 1 day  
| 13 I  | Solve problems and determine measurements involving chords, radii, **arcs, angles**, secants, and tangents of a circle (G-2-H) | • Determine the measures of inscribed angles.  
  Can students determine the measures of inscribed angles in circles? | Section 10-4 Inscribed Angles p. 544 – 551 | 1 day  

**Essential:** Big ideas/covered most frequently; 50% of content; 60-70% of instructional time; high # of test items on state assessment; mastery in current year  
**Important:** Key knowledge/skills/covered less frequently; 30% of content; 20-30% of instructional time; fewer # of items on state assessment;  
**Condensed:** Less important/least frequently; 20% of content; 10-20% of instructional time; reinforcement; extension/enrichment
<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence / Assessments of learning</th>
<th>Instructional Notes/Strategies</th>
<th>Differentiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>H)</td>
<td></td>
<td>Test 1</td>
<td></td>
<td>½ day</td>
</tr>
</tbody>
</table>
| 13 I  | Solve problems and determine measurements involving chords, radii, arcs, angles, secants, and tangents of a circle (G-2-H) | • Determine the measures of angles formed by lines intersecting  
  o On a circle  
  o Inside a circle  
  o Outside a circle  
  Can students determine the measures of angles formed by secants and/or tangents of a circle? | Section 10-6 Secants, Tangents, and Angle Measures p. 561 – 568  
  Note: Teach secants and tangents if time allows. | 1 day |
| 13 I  | Solve problems and determine measurements involving chords, radii, arcs, angles, secants, and tangents of a circle (G-2-H) | • Determine the measures of segments that intersect in the  
  o Interior of a circle  
  o Exterior of a circle  
  Can students use the power of a point theorem (intersecting chords and intersecting secants) to determine measures of intersecting chords in a circle? | Section 10-7 Special Segments in a Circle p. 569 – 574  
  Unit 7 Activity 11 BLM  
  Unit 7 Activity 12 | 1 day |
| 21 C  | Determine the probability of conditional and multiple events, including mutually and non-mutually exclusive events (D-4-H) (D-5-H) | • Solve problems involving sectors and segments of circles.  
  Can students solve problems with sectors and segments of circles? | Section 11-5 Geometric Probability p. 622 – 627  
  Unit 7 Activity-Specific Assessment, Activity 3  
  Unit 7 Activity 7 | 1 day |

Essential: Big ideas/covered most frequently; 50% of content; 60-70% of instructional time; high # of test items on state assessment; mastery in current year  
Important: Key knowledge/skills/covered less frequently; 30% of content; 20-30% of instructional time; fewer # of items on state assessment;  
Condensed: Less important/least frequently; 20% of content; 10-20% of instructional time; reinforcement; extension/enrichment