Lafayette Parish School System
Unlocking the GLEs
Grade 6

Unit 1: Whole Numbers, Factors, and Primes

Time Frame: 5 weeks

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence/Assessments of Learning</th>
<th>Instructional Notes /Strategies</th>
<th>Additional Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Objectives/Skills</td>
<td>Materials</td>
<td></td>
</tr>
</tbody>
</table>

Unit Description

This unit focuses on fundamental skills that are basic to operations with fractions and decimals. It provides opportunities for modeling and identifying perfect squares and working with operations involving powers of 10.

Student Understandings

Students understand that prime numbers, prime factorization, common factors, common multiples, least common multiple, and greatest common factor are important foundation skills. They should know that multiplying and dividing by 10 and powers of 10 are easy mental computations; it is actually inefficient to write down such computations or to use a calculator.

Vocabulary List:

factor, multiple, product, quotient, greatest common factor, least common multiple, perfect square, square root, prime, composite, prime factorization, divisor, array, arithmetic pattern, geometric pattern, exponent, systematic list / organized list

Reminder: All GLEs can be further developed using *Use It, Don’t Lose It!, Project Lift, Buckle Down, Rise and Shine*, or other comparable daily focus. They can also be covered using RENMath by those schools who utilize that program.

1E

Factor whole numbers into primes. (N-1-M)

- TLW demonstrate an understanding of the divisibility rules and be able to factor whole numbers.
- TLW demonstrate an understanding of prime and composite numbers.
- TLW model and identify exponents as it relates to prime factorization.

GQ: Can students factor whole numbers into primes?

Instructional Notes:

Define prime and composite. Relate prime factorization to multiplication facts. Introduce factor trees. Model and identify exponents as they relate to prime factorization.

Materials:

- Activity 1 - Game Time – Working with Products *(mandatory)*
- Activity 2 - Greatest Common Factor *(optional)*
- Venn Diagram with two circles (factors and multiples)

2I

Determine common factors and common multiples for pairs of whole numbers (N-1-M)

- TLW determine common factors for a pair of whole numbers by comparing lists of factors and by using factor trees.
- TLW determine common multiples for a pair of whole numbers by comparing lists of multiples and by using factor trees.

GQ: Can students determine common factors or multiples from a list?

GQ: Can students determine common factors or multiples using prime factorization?

Instructional Notes:

Can be done 2 ways – by listing the factors or multiples of two numbers and choosing those in common; by using the prime factorization of the 2 numbers.

Materials:

- Activity 2 - Game Time – Working with Products *(mandatory)*
- Activity 4 - Factors *(mandatory)*

**Activity 7 Prime factorization revisited *(optional)*

The following websites can be used throughout the year.

- mathplayground.com
 (clips on math topics)
- mathvideos.com
 (clips on math topics)
Lafayette Parish School System
Unlocking the GLEs
Grade 6
Unit 1: Whole Numbers, Factors, and Primes
August 17-September 21, 2011
EduSoft range 9/22-9/23

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence/Assessments of Learning Objectives/Skills</th>
<th>Instructional Notes /Strategies Materials</th>
<th>Additional Resources</th>
</tr>
</thead>
</table>
| 3 E | Find the greatest common factor (GCF) and least common multiple (LCM) for whole numbers in the context of problem-solving. (<N-1-M>) | - TLW find the GCF and the LCM for a pair of whole numbers by comparing lists of factors and by using factor trees.
- TLW will create and use Venn diagrams, especially those relating to factors and multiples.
- TLW determine whether GCF or LCM is needed to solve real-life application problems.
GQ: Can students use number sense and factorization to find GCF and LCM of a pair of positive whole numbers? | Instructional Notes:
This is an extension of GLE 2. Begin finding GCF or LCM with the lists of factors or multiples. Then move to learning to find GCF and LCM using prime factorization. When students learn to find GCF and LCM, they need to learn which is needed to solve real-life application problems.
Activity 9 (Mandatory) leads students to applications of GCF and LCM.
Materials:
Activity 9 Application of GCF and LCM (mandatory)
McDougal Littell: Lessons 5.2-5.4
Prime Time (CMP)
Glencoe Chapter 5
MathThematics Module 4 | Activity 5 Greatest Common Factor (optional)
Activity 6 Least Common Multiple (optional) |
| 11 I | Mentally multiply and divide by powers of 10 (e.g., 25/10 = 2.5; 12.56 x 100 = 1,256) (<N-1-M>). | - TLW demonstrate a conceptual, verbal, and numerical understanding of place value to ten-thousandths.
- TLW mentally multiply or divide by powers of 10 using various strategies.
GQ: Can students mentally multiply or divide by powers of 10? Are they using different strategies to do so? | Instructional Notes:
Review place value chart. Have students give the place value of digits in a number. Have students read and write in words, numbers with decimals to the ten-thousandths place.
Daily Review place value (value of a number and place of the digit) | Activity 8 Powers of 10 (optional) |
Lafayette Parish School System

Unlocking the GLEs
Grade 6
Unit 1: Whole Numbers, Factors, and Primes
August 17-September 21, 2011
EduSoft range 9/22-9/23

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence/Assessments of Learning Objectives/Skills</th>
<th>Instructional Notes /Strategies Materials</th>
<th>Additional Resources</th>
</tr>
</thead>
</table>
| 14 1 I | Model and identify perfect squares up to 144 (A-1-M). | • TLW model and identify perfect squares.
• TLW determine the square root of a perfect square.
GQ: Can students model and identify perfect squares?
GQ: Can students determine the square root of a perfect square? | **Instructional Notes:**
Use area models to demonstrate how perfect squares factor. Length of the side of the square is the square root of the area of that square.
Activity 3 Prime Arrays (mandatory)
Materials:
Glencoe p. 523 | |
| 38 1 I | Describe patterns in sequences of arithmetic and geometric growth and next-relationships (i.e., growth patterns where the next term is dependent on the present term) with numbers and figures (P-3-M) (A-4-M) | • TLW write the “rule” for arithmetic and geometric patterns in words and mathematically.
• TLW complete a given arithmetic or geometric pattern.
GQ: Can students describe and write the “rule” for arithmetic and geometric patterns?
GQ: Can students complete a given pattern? | **Instructional Notes:**
Define and distinguish between arithmetic and geometric growth. Use T-tables to help determine the growth pattern. Practice writing the “rule” in words and mathematically. Students should also be able to give the next three numbers (or shapes) in the pattern.
Materials:
MathThematics Module 2
McDougal Littell Lesson 1.1; pp 550, 553, 608, 610-611.
Prime Time (CMP) | **Activity 10 : Sequences and Expressions (optional)** |
Lafayette Parish School System
Curriculum Map
Grade 6 Math
Unit 2: Fractions, Decimals, and Parts
Time Frame: 5 weeks
September 26, 2011 – October 28, 2011
Edusoft Range October 31 - November 1

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence/Assessments of Learning</th>
<th>Instructional Notes /Strategies</th>
<th>Additional Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 C</td>
<td>Read and write numerals and words for decimals through ten-thousandths (N-3-M)</td>
<td>• TLW read and write numbers and words for decimals through ten-thousandths. GQ: Can students represent and interpret values for decimals through ten-thousandths? Instructional Notes: Review place value. Students should read and write numbers and words for decimals using real-life applications. This can be done throughout the year with any decimal word problems. Materials: Activity 7 Rolling for Decimals (mandatory) McDougal Littell 3.1, wkbk. pgs. 31-32 Bits and Pieces I (CMP) MathThematics pgs. 133-141 Glencoe 3.1 wkbk. pgs.123-125</td>
<td>Activity 3 Reading and Writing Decimals (optional) The following websites can be used throughout the year. mathplayground.com (clips on math topics) mathvideos.com (clips on math topics)</td>
<td></td>
</tr>
<tr>
<td>4 E</td>
<td>Recognize and compute equivalent representations of fractions and decimals (i.e., halves, thirds, fourths, fifths, eighths, tenths, hundredths) (N-1-M) (N-3-M)</td>
<td>• TLW recognize benchmarks fractions/decimals (including mixed numbers). • TLW recognize and compute fractions to decimals and decimals to fractions (including mixed numbers). • TLW compute fractions to lowest terms (including mixed numbers and improper fractions). Instructional Notes: Students should be given fraction and decimal benchmark quizzes throughout this unit. Prime factorization learned in Unit 1 can be used to help simplify</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unit Description
The focus of this unit is on concepts and basic relationships of fractions and decimals. There is an emphasis on estimating outcomes prior to developing the computation algorithms that give the exact answers. Focus is also given to writing fractions in lowest terms. The development of the concept of rate, ratio, proportion, and percent continues by representing and working with miles/hour, dollar/pound, miles/gallon, and other derived rates and percents.

Student Understandings
Students understand that fractions, decimals, and integers can be compared by placement on a number line and/or by the use of symbols. They can solve ratio, proportion, and percent problems with models and pictures. Students understand place value to the ten-thousandths place. They can use rates to solve real-life problems.

Vocabulary List
numerator denominator rate ratio proportion integers opposite equivalent fractions percent precision accuracy decimal fraction mixed numbers improper fractions lowest terms (simplify) estimate unit rate reasonableness of answers terminating and repeating decimals benchmarks (fractions, decimals, percents)

Reminder: All GLEs can be further developed using *Use It, Don’t Lose It!, Project Lift, Buckle Down, Rise and Shine,* or other comparable daily focus. They can also be covered using RENMath by those schools who utilize that program.
<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence/Assessments of Learning</th>
<th>Instructional Notes /Strategies</th>
<th>Additional Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 I</td>
<td>Decide which representation (fraction/decimal) of a positive number is appropriate in a real-life situation. (N-1-M)(N-5M)</td>
<td>TLW problem solve with fractions and decimals to determine whether a fraction or a decimal is needed to solve the problem.</td>
<td>Instructional Notes: Use this GLE when working with real-life fractions and decimal problems. Relate to student experience. Literature Log Professor Know-It-All * see Additional Resources above for GLE 4 Note: This GLE will be revisited in Unit 3.</td>
<td>Activity 2 A Measuring We Go… (optional)</td>
</tr>
</tbody>
</table>

GQ: Can students determine whether a fraction or a decimal is needed in a solution of a real life problem?

| 6 E | Compare positive fractions, decimals, and positive and negative integers using symbols and number lines (N- | TLW compare fractions, decimals, and integers on a number line (no operations). | Instructional Notes: Students need much practice placing numbers on a number line, especially fractions, decimals, and | Activity 6 Box Scores (optional) |

GQ: Can students correctly compare fractions, decimals and...
Grade 6 Math

Unit 2: Fractions, Decimals, and Parts

Time Frame: 5 weeks
September 26, 2011 – October 28, 2011

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence/Assessments of Learning</th>
<th>Instructional Notes /Strategies</th>
<th>Additional Resources</th>
</tr>
</thead>
</table>
| 2-M) | integers? | integers.
Materials:
Activity 4 Fraction Strips
(mandatory)
Activity 5 Same or Different
(mandatory)
Learning Log
McDougal Littell
3.3, wkbk. pgs. 35-36
5.5, wkbk. pgs. 67-68
11.1, wkbk. pgs. 145-146
Glencoe
3.2, wkbk. pgs. 129-130
5.5, wkbk. pgs. 242-243
8.1, wkbk. pgs. 385-385
MathThematics
pgs. 310 – 313; 136-141; 511-512 | |

| 10 I | Use and explain estimation strategies to predict computational results with positive fractions and decimals (N-6-M) | • TLW estimate with fractions (0,.1/2, 1) and decimals (to the nearest whole number), using mental math.
• TLW problem solve using estimation with fractions and decimals (comparing).
GQ: Can students predict reasonable outcomes for the addition and subtraction of fractions and decimals? | **Instructional Notes:**
Students must learn to round decimals and fractions to the nearest whole number in order to estimate with these numbers.
Learning Log
Materials:
Activity 8 Grocery Math
(mandatory)
McDougal Littell
3.4, wkbk. pgs. 37-38
3.5, wkbk. pgs. 39-40.
6.1, wkbk. pgs. 75-76
Glencoe
3.3, wkbk pgs. 133-135
3.4, wkbk. pgs. 138 - 140
6.1,wkbk. pgs. 277-279 | |

Edusoft Range October 31-November 1
<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence/Assessments of Learning</th>
<th>Instructional Notes /Strategies</th>
<th>Additional Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>31. C</td>
<td>Demonstrate an understanding of precision, accuracy, and error in measurement (D-2-M) (to be taught in conjunction with GLE 18)</td>
<td>TLW demonstrate an understanding of precision and accuracy and measurement with a ruler. GQ: Can students measure to the nearest 1/16 of an inch or millimeter and give error in measurement?</td>
<td>Instructional Notes: Students need to measure to the nearest 1/16 inch or millimeter and determine the possible error in their measurement. This is (\pm \frac{1}{2}) of the unit in which the student is measuring. This can be done as a focus throughout the year. Complete with GLE 18. Materials: Activity 4 Fraction Strips (mandatory) McDougal Littell 2.1, wkbk. pgs. 15 – 16 3.2, wkbk. pgs. 33-34 5.6 Glencoe 12.1, wkbk. pgs. 599–601 12.3, wkbk. pgs. 609-611 12.4, wkbk. pgs.614-616 MathThematics pgs. 161-162; 322-323 Note: GLE 31 & 18 carry over to Unit 3</td>
<td>Activity 2 A Measuring We Go… (optional)</td>
</tr>
<tr>
<td>18. 1</td>
<td>Measure length and read linear measurements to the nearest sixteenth and error in measurement.</td>
<td>TLW measure to the nearest 1/16 inch and millimeter with a ruler. TLW determine the possible error in measurement. GQ: Can students measure to the nearest 1/16 of an inch or millimeter error in measurement?</td>
<td>Instructional notes: This should be an ongoing focus throughout the year. The error in measurement is (\pm \frac{1}{2}) the unit of measure. Activity 4 Fraction Strips (mandatory)</td>
<td>Activity 1 Magnified Inch (optional) Activity 2 A Measuring We Go… (optional) Foldables</td>
</tr>
<tr>
<td>GLE #</td>
<td>GLEs</td>
<td>Evidence/Assessments of Learning</td>
<td>Instructional Notes /Strategies</td>
<td>Additional Resources</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>----------------------------------</td>
<td>--------------------------------</td>
<td>---------------------</td>
</tr>
</tbody>
</table>
| 12 | Divide 4-digit numbers by 2-digit numbers with the quotient written as a mixed number or a decimal(N-7-M) | • TLW estimate answers; to division problems using 4-digit by 2-digit numbers to discuss reasonableness of answers.
• TLW divide 3-digit numbers by 2-digit numbers.
GQ: Can students divide 4-digit numbers by 2-digit numbers with the quotient written as a mixed number or a decimal? | Instructional notes:
This should be an ongoing focus throughout the year.
Be sure students understand what division is.
Remainder can be represented as a fraction or a decimal. Use when computing rates and ratios.
Materials:
McDougal Littell p. 691
Glencoe p. 591
Bits and Pieces I (CMP)
MathThematics p. 596 | Literature Log* see Additional Resources above for GLE 31 |
| 13 | Use models and pictures to explain concepts or solve problems involving ratio, proportion, and percent with whole numbers (N-8-M) | • TLW find unit rates from given ratios.
• TLW write and compare rates and ratios.
• TLW determine percent from a given model.
• TLW determine if 2 given ratios form a proportion.
GQ: Can students utilize various strategies to work with rates and ratios such as mph, mpg, and dollar/pound? | Instructional Notes:
Use models such as 10 x 10 grids to illustrate percent.
Relate unit rates to simplifying fractions.
Ratios and proportions are introduced at this grade level. Activities 9 and 11 (optional) Learning Log
Materials:
Activity 8 Grocery Math (mandatory)
McDougal Littell
8.1 through 8.5; wkbk. pgs. 101-110
Glencoe
10.1 through 10.4, wkbk. pgs. 492-496 | Activity 9 Tangram Ratio (optional) |
<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence/Assessments of Learning</th>
<th>Instructional Notes /Strategies</th>
<th>Additional Resources</th>
</tr>
</thead>
</table>
| 20 | Calculate, interpret and compare rates such as $/lb., mpg, and mph (M_1-M)(A-5-M) | • TLW write and compare rates in real-life problems.
• TLW find unit rates in order to determine the “best buy.”
GQ: Can students utilize various strategies to work with rates and ratios such as mph, mpg, and dollar/pound? | Instructional notes:
Have students find “best buys” by comparing unit rates, using real-life examples.
Materials:
Activity 8 Grocery Math
check for local merchants sales advertisements (mandatory) | * see Resources for GLE 13
Activity 6 Box Scores (optional)
Activity 11 Vacation Math (optional)
Suggestion: Having a variety of ads will enhance the lesson on comparing rates. |
| 8E | Demonstrate the meaning of positive and negative numbers and their opposites in real-life situations. (N-3-M) (N-5-M) | TLW compare positive and negative integers and their opposites in real life applications. (no operations)
GQ. Can students compare positive and negative integers and their opposites in real life applications? | Activity 10 Are You Positive? (mandatory) |
Lafayette Parish School System
Curriculum Map
Grade 6 Math
Unit 2: Fractions, Decimals, and Parts
September 26, 2011 – October 28, 2011
Edusoft Range October 31- November 1

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence/Assessments of Learning</th>
<th>Instructional Notes /Strategies</th>
<th>Additional Resources</th>
</tr>
</thead>
</table>

Time Frame: 5 weeks

September 26, 2011 – October 28, 2011

Edusoft Range October 31- November 1
Lafayette Parish School System
Curriculum Map
Grade 6 Math
Unit 3: Operating with Fractions and Decimals
Time Frame: 4 weeks
November 2, 2011 – December 7, 2011
Edusoft Range December 8 - 9

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence/Assessments of Learning</th>
<th>Instructional Notes/Strategies</th>
<th>Additional Resources</th>
</tr>
</thead>
</table>
| 18 I | Measure length and read linear measurements to the nearest sixteenth-inch and millimeter (M-1-M) | • TLW demonstrate ability to measure lengths to the nearest 1/16 inch and millimeter, read the measurements, and determines the reasonableness of the measurement. GQ: Can students measure lengths to the nearest 1/16 inch and millimeter, read the measurements, and determines the reasonableness of the measurement? | Instructional Notes:
This skill was previously introduced, so could be used as an instructional focus. Students need to actually measure and write their measurements in order to understand this concept.
Materials:
* Bits and Pieces I (CMP)*
* McDougal Littell*
 2.1, wkbk. pgs. 15 – 16
 3.2, wkbk. pgs. 33-34
 5.6
* Glencoe*
 12.1, wkbk. pgs. 599–601
 12.3, wkbk. pgs. 609-611
 12.4, wkbk. pgs.614-616
* MathThematics*
 pgs. 161-162; 322-323 | |

Unit Description
This unit focuses on the refinement of understandings of addition and subtraction as students use concrete materials to model these operations with fractions and decimals. Activities provide opportunities to develop an understanding of fraction transformations, common denominators, and lowest terms in terms of equivalences. Precision is explored on real-life situations.

Student Understandings
Students understand that the addition and subtraction of fractions and decimals with answers in lowest terms or to the nearest decimal value is essential to solve real world problems. The precision of a measurement is related to the unit of measure chosen.

Vocabulary List:
lowest terms simplify like/unlike denominators common denominators place value area discount taxes estimate reasonable answer benchmarks GCF/LCM error in measurement precision/accuracy ± notation

Reminder: All GLEs can be further developed using *Use It, Don’t Lose It!, Project Lift, Buckle Down, Rise and Shine*, or other comparable daily focus. They can also be covered using RENMath by those schools who utilize that program.

Activity 8 Let’s Be Precise or At Least Accurate (optional)
Lafayette Parish School System
Curriculum Map
Grade 6 Math
Unit 3: Operating with Fractions and Decimals
November 2, 2011 – December 7, 2011
Edusoft Range December 8 - 9

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence/Assessments of Learning</th>
<th>Instructional Notes /Strategies</th>
<th>Additional Resources</th>
</tr>
</thead>
</table>
| 31 C | Demonstrate an understanding of precision, accuracy, and error in measurement (M-2-M) | • TLW give the error in measurement as $\pm \frac{1}{2}$ the unit of measure when measuring.
• TLW determine the reasonableness of the measurement and its error.
GQ: Can students determine the precision of a measurement based on the measuring tool used?
GQ: Can students define accuracy as being the measurement which is closest to the real measurement (actual length, weight)? | Instructional Notes:
This skill should be included when working with GLE 18 (above). It was introduced in previous units. Students are not required to give the range of error in measurement. Real-life applications are suggested.
Learning Log
Brainstorm
* see Instructional Notes/Strategies above for GLE 31 | Activity 8
Let’s Be Precise or At Least Accurate (optional)
Activity 9
Precision Instruments (optional)
Suggestions: Enable students to have many opportunities with hands on objects to measure with a ruler. |
| 3 E | Find the greatest common factor (GCF) and least common multiple (LCM) for whole numbers in the context of problem solving. | • TLW determine whether GCF or LCM is needed to solve real-life problems.
• TLW use LCM to find common denominators.
GQ: Can students find the LCM to determine common denominators? | Instructional Notes:
This was introduced in a previous unit, so it can be used as a focus during this unit. Relate LCM to finding common denominators when adding fractions. Use this GLE with GLEs 5 and 9.
Materials:
Activity 3 Adding and Subtracting Unlike Denominators (mandatory)
McDougal Littell Chapter 5,
Glencoe Chapter 5 &
MathThematics Module 4
Bits and Pieces I (CMP)
Prime Time (CMP)
(review GCF/LCM skills and LCD)
Note: GCF and LCM will be used to find LCD for GLE 9 | Activity 1
Fraction Vocabulary Awareness (optional)
Activity 5
Landscaping (optional) |
| 5 | Determine which representation (i.e., fraction) is appropriate in a given situation, including measuring. | TLW determine which representation (fraction or decimal) is appropriate in a given situation, including measuring. | Instructional Notes:
Fraction, decimal, and percent | Activity 1
Fraction Vocabulary Awareness (optional) |
Lafayette Parish School System
Curriculum Map
Grade 6 Math

Unit 3: Operating with Fractions and Decimals

November 2, 2011 – December 7, 2011

Edusoft Range December 8 - 9

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence/Assessments of Learning</th>
<th>Instructional Notes / Strategies</th>
<th>Additional Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>or decimal (of a positive number is appropriate in a real-life situation (N-1-M)(N-5-M))</td>
<td>GQ: Can students determine which representation (fraction or decimal) is appropriate in a given situation, including measuring?</td>
<td>benchmark quizzes should be continued. This GLE was introduced in previous chapters. Learning Log Brainstorm</td>
<td>Materials: Activity 5 Real-World Decimals and Fractions (mandatory) McDougal Littell Chapters 5 and 6 McDougal Littell Chapters 5.3; wkbkpgs. 63-63; 5.6 wkbk pgs. 69-70 Bits and Pieces I (CMP) MathThematics pgs. 108 - 119 Glencoe 5.2 wkbk pgs. 226 – 228; 5.3 wkbk pgs. 231 – 233; 5.6; wkbk pgs. 246- 248</td>
</tr>
</tbody>
</table>
| 9 E | Add and subtract fractions and decimals in real-life situations (N-5-M) | • TLW demonstrate ability to add and subtract decimals and fractions with both like and unlike denominators.
• TLW apply addition and subtraction skills with fractions and decimals in real-life applications, such as money and measurement problems.
GQ: Can students use a variety of strategies to add and subtract fractions (including mixed numbers), leaving answers in lowest terms when specified?
GQ: How can students add and subtract decimals, leaving answers rounded to specified places?
GQ: In what ways can students apply addition and subtraction of fractions and decimals to money and measurement problems? | Instructional Notes:
Adding fractions with unlike denominators is a new skill for students. Students should be able to add/subtract mixed numbers as well.
The most common real-life situation with adding and subtracting decimals involves using money in the problems. Students should have to figure out whether a fractional answer or a whole number is appropriate in the answer to a real-life problem.
Materials:
Activity 2 Mental Giants | Activity 4 Numbers in the News (optional)
Activity 7 Adding and Subtracting Decimals (optional)
Activity 8 Let’s Be Precise or At Least Accurate (optional)
Suggestion: Addition and subtraction of fractions and decimals should be introduced with a variety of concrete manipulatives. (fraction tiles, fraction strips, grid paper, base ten blocks, etc.) |
Lafayette Parish School System
Curriculum Map
Grade 6 Math

Unit 3: Operating with Fractions and Decimals

Time Frame: 4 weeks

November 2, 2011 – December 7, 2011

Edusoft Range December 8 - 9

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence/Assessments of Learning</th>
<th>Instructional Notes /Strategies</th>
<th>Additional Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(mandatory) Activity 3 Adding and Subtracting Unlike Denominators (mandatory) Activity 5 Real-World Decimals and Fractions (mandatory) Activity 8 Let’s Be Precise or Al Least Accurate (mandatory)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Glencoe Chapter 6.1 – 6.5 wkbk pgs. 278-279, 283-284, 288-289, 293-294, 298-299

Bits and Pieces I (CMP)

*McDougal Littell Chapter 6.1-6.4 wkbk pgs. 75-82

MathThematics Module 5
Unit Description
This unit examines the selection and use of appropriate statistical methods to analyze data in numerical and graphical ways, including use of an input-output table. Venn diagrams are used to solve problems involving counts of objects classified in multiple ways.

Student Understandings
Students understand that data can be represented using frequency charts, stem-and-leaf displays, and scatter plots. This representation of data can be described by using measures of central tendency. In addition, students understand that Venn diagrams can be an appropriate method to solve problems.

Vocabulary List:
- frequency table
- stem-and-leaf plot
- scatter plot
- mean
- median
- mode
- range
- input-output table
- trends
- logic problems
- line plot
- tally marks
- central tendency
- function table
- data
- x-axis, y-axis
- line of best fit (trend line)
- Venn diagram
- quartile (upper, lower)
- extreme (upper, lower)
- Box-and-Whisker Plot
- outlier

Reminder: All GLEs can be further developed using *Use It, Don’t Lose It!, Project Lift, Buckle Down, Rise and Shine*, or other comparable daily focus. They can also be covered using RENMath by those schools who utilize that program.

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence/Assessments of Learning</th>
<th>Instructional Notes /Strategies</th>
<th>Additional Resources</th>
</tr>
</thead>
</table>
| 9 | Add and subtract fractions and decimals in real-life situations (N-5-M) | • TLW add and subtract fractions and decimals in real-life situations.
• TLW determine whether a fractional remainder or a whole number is appropriate in the answer to a real-life problem. | Instructional Notes:
This is to be used as a focus during this unit, to review what was learned in the previous unit.
Materials:
Glencoe Chapter 6
McDougal Littell Chapters 5 and 6
MathThematics Module 5
Bits and Pieces I (CMP) | |
| 32 | Calculate and discuss mean, median, mode, and range of a set of discrete data to solve real-life problems (D-2-M). | • TLW calculate and discuss mean, median, and mode of a set of data.
• TLW calculate and discuss range in real-life applications.
• TLW write about measures of central tendency. | Instructional Notes:
Usually, median and mode are taught first, and mean is taught separately afterward so that students have less confusion about which is which.
These skills are introduced at this grade level. Students need to be able to determine which measure of central tendency is most appropriate to use in a given situation.
Be sure to use the vocabulary terms “measures of central tendency” and “measures of center” when working with mean, median, and mode.
After these skills are taught, this | |

Activity 3 Measures of Central Tendency (optional)
Activity 4 Comparing Data (optional)
Activity 5 Looking at Data (optional)
Lafayette Parish School System
Curriculum Map
Grade 6 Math
Unit 4: Data and Decisions

Time Frame: 5 weeks

December 12, 2011 – January 27, 2012

Edusoft Range: Jan. 30-31

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence/Assessments of Learning</th>
<th>Instructional Notes /Strategies</th>
<th>Additional Resources</th>
</tr>
</thead>
</table>
| 29 | E | Collect, organize, label, display, and interpret data in a frequency table, stem-and-leaf plot, and scatter plot and discuss patterns in the verbal and in writing (D-2-M)(A-3-M). | GLE can be used as a focus for the remainder of the school year. **Materials:**
Activity 1 Frequency Tables (optional)
Vocabulary cards
Word grid
Glencoe Chapter 2
McDougal Littell Chapter 2
Data About Us (CMP)
MathThematics Module 3 |
Activity 2 Stem-and-Leaf Plots (optional)
Activity 3 Measures of Central Tendency (optional)
Activity 4 Comparing Data (optional)
Activity 5 Looking at Data (optional)
Student Data Survey (BLM)
Rubric for Variety of Graphs Activity (BLM) |
| | | • TLW collect, organize, label, display, and interpret data in frequency tables.
• TLW collect, organize, label, display, and interpret data in line plots, stem-and-leaf plots, and scatter plots.
• TLW demonstrate ability to read box-and-whisker plots. | **Instructional Notes:**
Begin this GLE with given data. Have students make a frequency table from the data and then graph it. Students need to learn which type of graph is appropriate for given data. Stem-and-leaf plots and box-and-whisker plots are new to the students. They need to be able to construct stem-and-leaf plots, but will just learn to read the box-and-whisker plots this year. Relate mean, median, and mode to this GLE. **Materials:**
Activity 1 Frequency Tables (mandatory)
Activity 8 Scatter Plots (mandatory)
Glencoe Chapter 2
Data About Us (CMP)
Vocabulary cards
McDougal Littell Chapter 2
Learning Log | |
<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence/Assessments of Learning</th>
<th>Instructional Notes /Strategies</th>
<th>Additional Resources</th>
</tr>
</thead>
</table>
| 30 | Describe and analyze trends and patterns observed in graphic displays (D-2-M). | • TLW use trends and patterns to describe given data.
• TLW discuss and interpret scale/intervals in relation to data. | Instructional Notes:
Each graph drawn should be analyzed. Look for positive or negative relationships between the variables being graphed. Use these discovered relationships to predict future results using the graphs. Students can use mean, median, mode, or range to help them interpret the graphs. Students should write about the trends and patterns in the data.
Materials:
Activity 8 Scatter Plots (mandatory)
Activities 9 Venn Diagrams (mandatory) | Activity 2 Stem-and-Leaf Plots (optional)
Activity 3 Measures of Central Tendency (optional)
Activity 4 Comparing Data (optional)
Activity 5 Looking at Data (optional)
Learning Log |
| 37 | Describe, complete, and apply a pattern of differences found in an input-output table (P-1-M)(P-2-M)(P-3-M). | • TLW be able to complete an input-output table.
• TLW demonstrate ability to interpret input-output tables by writing the “rule” for the table in words. | Instructional Notes:
Students need to be able to complete input-output tables by determining the patterns in the vertical x and y columns. Using these discovered patterns, students can formulate a rule for the relationship between x and y in the input-output tables. Students should progress from writing the rule in words to writing it algebraically.
Materials: | Activity 7 What’s My rule? (optional) |
Lafayette Parish School System
Curriculum Map
Grade 6 Math
Unit 4: Data and Decisions
Time Frame: 5 weeks
December 12, 2011 – January 27, 2012
Edusoft Range Jan. 30-31

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence/Assessments of Learning</th>
<th>Instructional Notes /Strategies</th>
<th>Additional Resources</th>
</tr>
</thead>
</table>
| 33 | Create and use Venn diagrams with two overlapping categories to solve counting logic problems (D-3-M). | • TLW demonstrate the ability to create 2-circle Venn diagrams.
• TLW demonstrate the ability to finish a partially complete Venn diagram.
• TLW demonstrate the ability to answer questions from real-life problems relating to Venn diagrams.
GQ. Can students create and use Venn diagrams with two overlapping categories to solve counting logic problems? | **Activity 6** Input-Output Table
(mandatory)
Glencoe 9-6
McDougal Littell p. 604
Vocabulary cards
MathThematics p. 577-582
Learning Log | **Instructional Notes:**
Venn diagrams can be used with factors or multiples, animal traits, or classmate characteristics to give them more meaning to the students. Real-life problems are difficult for the students to make Venn diagrams for. Give students real-life application sample Venn diagrams to practice answering questions using them.
Materials:
Activities 9 Venn Diagrams
(mandatory)
Activities 10 Using Venn Diagrams to solve problems
(mandatory)
Learning Log
Story Chain
McDougal Littell p. 703
MathThematics p. 159-160,170
Glencoe Chapter 2
Data About Us |
<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence/Assessments of Learning</th>
<th>Instructional Notes /Strategies</th>
<th>Additional Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Unit Description
This unit focuses on analyzing characteristics and properties of 2- and 3-dimensional shapes and developing mathematical arguments about geometric relationships. It provides students opportunities to make and test predictions regarding tessellations and to extend their work to plotting points in all four quadrants of the coordinate plane. Area formulas are extended and include giving reasonable estimates of objects in the classroom or everyday real-life environments. Evaluating simple and two-step algebraic equations, modeling of squares up to 144, and the matching of equations and expressions to their verbal statements are addressed as they relate to geometry and measurement.

Student Understandings
Students understand it is necessary to use correct terminology to adequately describe 2- and 3-dimensional figures and their attributes. They should be able to discuss the measures of angles and the role the measures play in defining figures. In and out of the classroom, students should be able to recognize geometric shapes and be able to give reasonable estimates of their approximate measures.

Vocabulary List:
2-dimensional 3-dimensional perfect square square root tessellation transformation reflection translation rotations perimeter area volume edges vertices faces base height polygon polyhedron length width types of triangle quadrilateral rectangle square rhombus parallelogram trapezoid pentagon hexagon octagon millimeter centimeter meter kilometer regular/irregular shapes prism diagonal net pyramid cube altitude legs acute angle right angle obtuse angle straight angle complementary/supplementary angles point line line segment similar congruent symmetry algebraic expression formula

Reminder: All GLEs can be further developed using Use It, Don’t Lose It!, Project Lift, Buckle Down, Rise and Shine, or other comparable daily focus. They can also be covered using RENMath by those schools who utilize that program.

- TLW be able to define and identify a variable.
- TLW demonstrate ability to match algebraic expressions with verbal statements and vice versa.
- TLW demonstrate ability to match algebraic equations with verbal statements and vice versa.
- TLW be able to write a word or mathematical sentence from a description or a real-life situation.
- TLW be able to write a word or mathematical sentence related to geometry (example: find the missing dimension).

GQ. Can students match algebraic equations and expressions with verbal statements and vice versa pertaining to area or perimeter?

Instructional Notes:
Define variable and give many examples of when they are used.
Begin this skill with simple one-step expressions and equations.
Use real-life examples to help students understand this concept.
Relate this skill to this geometry unit. It can be continually used when finding area, perimeter, or a missing dimension if area or perimeter is known.

Suggestions:
Use visuals of 2-D shapes
<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence/Assessments of Learning</th>
<th>Instructional Notes /Strategies</th>
<th>Additional Resources</th>
</tr>
</thead>
</table>
| 16 | Evaluate simple algebraic expressions using substitution (A-2-M). | • TLW demonstrate ability to evaluate expressions using substitution.
 • TLW use correct order of operations when evaluating expressions.

GQ: Can students evaluate simple algebraic expressions using substitution when dealing with area and perimeter?
GQ: Can students evaluate simple algebraic expressions using substitution in relationship to other real-life applications? | Vocabulary Cards
Learning Log
Glencoe 1.5, 1.6 wkbk pgs. 22-23, 27-28
McDougal Littell Chapter 1.4-1.6 wkbk pgs. 7-12
MathThematics Module 1 pgs. 48-54 | |
| 17 | Find solutions to 2-step equations with positive integer solutions (A-2-M). (e.g., 2x + 3x = 20, 3x – 5 = 13) | • TLW solve one- and two-step equations with substitution (multiple choice).
 • TLW solve 2-step equations that relate to real-life applications using substitution only.

GQ: Can students find solutions to 2-step equations with positive integer solutions using substitution as they relate to geometry and measurement? | Instructional Notes:
Utilize area and perimeter problems to begin solving equations by using substitution.
Start with one-step equations and move to two-step when appropriate. Relate the equations and the solutions to real-life problems. Use some of the verbal | Buckle Down iLEAP |
<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence/Assessments of Learning</th>
<th>Instructional Notes /Strategies</th>
<th>Additional Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>I</td>
<td>Demonstrate an intuitive sense of relative sizes of common units for length and area of familiar objects in real-life problems (e.g., estimate the area of a desktop in square feet, the average adult is between 1.5 and 2 meters tall) (M-2-M) (G-1-M)</td>
<td>• TLW be able to estimate using the customary and metric system of measurement for real-life objects. GQ: Can the student demonstrate an intuitive sense of relative sizes of common units for length and area of familiar objects in real-life problems? GQ: Can students use various strategies to find reasonable estimates for measures of geometric objects in the world around them?</td>
<td>Instructional Notes: GLE 21 and GLE 18 should be taught simultaneously. GLE 21 develops intuitive sense of relative sizes of familiar objects and GLE 18 verifies this through measuring. (Estimate first and then measure using rulers. Relate to everyday objects, such as desks, size of rooms, football fields, etc.) Materials:</td>
</tr>
</tbody>
</table>

*Note: Solving two step equations should be only substitution. ie. working backwards using multiple choice questions

*Materials:
Activity 6 Calculating Perimeter and Area of Triangles, parallelograms and Trapezoids *(mandatory)*
*Glencoe 9.5 wkbk. pgs. 454-455

Note:

Instructional Notes:

Students worked with in GLE 15. For the students who do a good job of solving with substitution, move to solving equations without answers from which to choose. Eventually tie these equations into word problems – the students should be able to correctly match the equation to the problem and then solve it. This skill needs to be reviewed through instructional focus for the remainder of the school year.

Materials:

Activity 3 String Lengths *(optional)*
Lafayette Parish School System
Curriculum Map
Grade 6 Math
Unit 5: Geometry, Perimeter, Area, and Measurement

Time Frame: 7 weeks
February 1, 2012 – March 20, 2012

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence/Assessments of Learning</th>
<th>Instructional Notes /Strategies</th>
<th>Additional Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>I</td>
<td>Measure length and read linear measurement to the nearest 1/16 inch and millimeter (M-1-M).</td>
<td>Activity 2 Body Measurement (mandatory) Activity 7 Estimating Area and Perimeter of 2-D Shapes (mandatory) MathThematics pgs. 397-401</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>E</td>
<td>Apply concepts, properties, and relationships of points, lines, line segments, rays, diagonals, circles, and right, acute, and obtuse angles and triangles in real-life situations, including</td>
<td>Instructional Notes: This GLE covers a great deal of the unit. After it is taught, it must be reviewed throughout the rest of the school year. Geometry and measurement should be hands-on. Students need to</td>
<td>Activity 1 Vocabulary Cards (optional) Activity 11 Ray Time Activity 12 Picture It! (optional) Patty Paper Geometry</td>
</tr>
</tbody>
</table>

- **Activity 2 Body Measurement** (mandatory)
- **Activity 7 Estimating Area and Perimeter of 2-D Shapes** (mandatory)
- **MathThematics** pgs. 397-401
- **Instructional Notes:**
 - Students should be measuring throughout this unit when trying to find area and perimeter of 2-dimensional shapes or faces of 3-dimensional shapes. Be sure they use correct units in their measurements.
 - **Materials:**
 - **Activity 5 Measure It** (mandatory)
 - *McDougal Littell*
 - 2.1, wkbk. pgs. 15 – 16
 - 3.2, wkbk. pgs. 33-34
 - 5.6
 - *Glencoe*
 - 12.1, wkbk. pgs. 599–601
 - 12.3, wkbk. pgs. 609-611
 - 12.4, wkbk. pgs. 614-616
 - *MathThematics*
 - pgs. 161-162; 322-323

- **Instructional Notes:**
 - This GLE covers a great deal of the unit. After it is taught, it must be reviewed throughout the rest of the school year.
 - Geometry and measurement should be hands-on. Students need to

- **Activity 1 Vocabulary Cards** (optional)
- **Activity 11 Ray Time**
- **Activity 12 Picture It!** (optional)
- **Patty Paper Geometry**
Lafayette Parish School System
Curriculum Map
Grade 6 Math
Time Frame: 7 weeks
February 1, 2012 – March 20, 2012

Unit 5: Geometry, Perimeter, Area, and Measurement

Edusoft Range – after iLeap

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence/Assessments of Learning</th>
<th>Instructional Notes /Strategies</th>
<th>Additional Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>estimating sizes of angles.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- TLW be able to identify parts of a circle (radius, diameter, chord, center).
- TLW discover the relationship between the diameter and the circumference of a circle. (Circumference is approximately 3 times the diameter.) Do not calculate area and circumference of a circle.
- TLW identify types of triangles, naming them based on their angles and their sides.
- TLW demonstrate knowledge of the relationship between angles and sides (including complementary and supplementary angles).
- TLW find missing angle measures in a triangle, knowing the sum of the angles is 180 degrees.

GQ: Can students identify and discuss the properties of 2 and 3-dimensional figures, angles, and geometric relationships?

GQ: Can students use various strategies to find reasonable estimates for measures of geometric objects in the world around them?

- draw, estimate, and measure in order to understand the concept. Have students use a right angle as the benchmark in estimating angle measures. This can also be used to determine the reasonableness of angles actually measured. Use real-life applications/objects when identifying types of lines, angles, or triangles. Students not only need to be able to identify types of lines and angles; they also need to be able to discuss their properties. When discussing angles, include complementary and supplementary angles, which are new to the students this year. Use drawings to illustrate both of these. Students need to measure all 3 angles in several different triangles, add these measures, and see that the sum is 180 degrees regardless of the type of triangle. They can then move to finding a missing angle if the measure of two of the angles in a triangle are known. Simple equations should come in to play here. Have students relate knowledge of angles and triangles to actual objects in the classroom.

Materials:
- **Activity 2 (mandatory)**
- **Activity 11 Ray Time (mandatory)**
Lafayette Parish School System
Curriculum Map
Grade 6 Math
Unit 5: Geometry, Perimeter, Area, and Measurement
Time Frame: 7 weeks
February 1, 2012 – March 20, 2012
Edusoft Range – after iLeap

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence/Assessments of Learning</th>
<th>Instructional Notes /Strategies</th>
<th>Additional Resources</th>
</tr>
</thead>
</table>
| 28 E | Use a rectangular grid and ordered pairs to plot simple shapes and find horizontal and vertical lengths and area (G-6-M) | - TLW identify all parts of the coordinate grid.
- TLW plot shapes on a coordinate grid (all four quadrants) in order to estimate/determine area and perimeter of the figures.
GQ: Can students plot points in all 4 quadrants?
GQ: Can students use a rectangular grid and ordered pairs to plot simple shapes and find horizontal and vertical lengths and area? | *Glencoe* Chapter 13.1,13.2, 13.4-13.6
wkbk. pgs. 650-656; 665-676
McDougal Littell Chapter 9
wkbk. pgs. 115-130
Vocabulary cards
MathThematics Module 1
also pgs. 82-88, 424-426
Shapes and Designs (CMP)
iLeap Reference Sheet | Activity 13 *The Fly on the Ceiling* (optional) |
| 22 E | Estimate perimeter and area of any 2-dimensional figure (regular and irregular) using standard units (M-2-M). | - TLW estimate area and perimeter of 2-dimensional figures, both regular and irregular.
- TLW compute area and perimeter of squares, rectangles, triangles, parallelograms, and trapezoids.
- TLW compare the computed areas and perimeters | *Instructional Notes:*
GLE 28 sets a foundation for GLE 22 which leads into GLE 19. GLE 23 references appropriate units.
Students begin plotting points in quadrant 1 and graduate to plotting points in all 4 quadrants. Students should be able to plot simple shapes and could be challenged to find the missing vertex of a simple polygon. After the shapes are plotted, students should be able to find the horizontal and vertical length and area. Students can begin finding the area and perimeter of the shapes by counting the squares on the coordinate grid.
Materials:
Activity 14 *Plotting Shapes A* & *Plotting Shapes B* (*mandatory*) | Activity 4 *Room Measurement* (optional) |
<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence/Assessments of Learning</th>
<th>Instructional Notes /Strategies</th>
<th>Additional Resources</th>
</tr>
</thead>
</table>
| 14.1 | Model and identify perfect squares up to 144 (A-1-M) | • TLW model and identify perfect squares up to 144.
• TLW determine the square root of a perfect square.
GQ: Can the student model and identify perfect squares?
GQ: Can students determine the square root of a perfect square? | skills to begin finding area of any 2-dimensional figure (regular and irregular) using standard units.
They need modeling on how to divide an irregular figure into regular figure parts. This way, they can find the area of each part and add the areas. They can find area in several ways previously learned.
Students also need to actually measure the perimeter of these figures and compare their results with their estimates. (irregular figure should not include circles or semicircles)
Materials:
Activity 7 Estimating Area and Perimeter of 2-D Shapes
(mandatory)
iLEAP reference sheet | |

Instructinal Notes:
Use area models to demonstrate how perfect squares factor. Length of the side of the square is the square root of the area of that square. Perfect squares should be related to math facts (2 x 2, 3 x 3, 4 x 4, etc.). Students can then find the side of the square if the area is known. This is the square root.
Materials:
Activity 6 Calculating Perimeter and Area of Triangles, parallelograms and Trapezoids
(mandatory)
Lafayette Parish School System
Curriculum Map
Grade 6 Math
Unit 5: Geometry, Perimeter, Area, and Measurement
Time Frame: 7 weeks
February 1, 2012 – March 20, 2012
Edusoft Range – after iLeap

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence/Assessments of Learning</th>
<th>Instructional Notes /Strategies</th>
<th>Additional Resources</th>
</tr>
</thead>
</table>
| 19 | E | Calculate perimeter and area of triangles, parallelograms, and trapezoids (M-1-M). | Instructional Notes:
GLE 28 sets a foundation for GLE 22 which leads into GLE 19. GLE 23 references appropriate units. Students should begin this section on area and perimeter by using shapes previously plotted for GLE 28. Identifying the shapes should be done as a review. Their answers should be compared to their estimates. After this is mastered, formulas can be developed by relating the dimensions to the area and perimeter. The students can then begin to use the formulas. Finding area of trapezoids is new to the students. They need to understand that adding the 2 bases and dividing by 2 is actually averaging their lengths. This relates directly to finding the area of a parallelogram. Finding the formula for the area of a triangle will have more meaning if the triangle is shown to be half of a parallelogram. Students should continue to use of the iLEAP reference sheet, so the students will become familiar with it. Perfect squares should be related to math facts (2 x 2, 3 x 3, 4 x 4, etc.). Students can then find the side of the square if the area is known. This is the square root. (GLE 14) Only use perfect | |
| | | | | |
Lafayette Parish School System
Curriculum Map
Grade 6 Math

Unit 5: Geometry, Perimeter, Area, and Measurement
February 1, 2012 – March 20, 2012

Edusoft Range – after iLeap

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence/Assessments of Learning</th>
<th>Instructional Notes /Strategies</th>
<th>Additional Resources</th>
</tr>
</thead>
</table>
| 23 C | Identify and select appropriate units to measure area (M-3-M). | • TLW use appropriate units to measure area. GQ: Can students identify and select appropriate units to measure area? | **Instructional Notes:**
GLE 28 sets a foundation for GLE 22 which leads into GLE 19. GLE 23 references appropriate units. This GLE should be used throughout the unit. Whenever students estimate or find area or perimeter, they should be using correct units in their answers. (Relate to everyday objects, such as desks, size of rooms, football fields, etc.)

Materials:

- **Activity 7** Estimating Area and Perimeter of 2-D Shapes (mandatory)

- Activity 4 Room Measurement (optional) |

Materials:

- **Activity 6** Calculating Perimeter and Area of Triangles, parallelograms and Trapezoids (mandatory)
- **Activity 14** Plotting Shapes (mandatory)
- Glencoe 4.5, 14.1-14.2 wkbk. pgs. 190-191; 700-706
- McDougal Littell 2.2, 10.1, 10.2 wkbk. pgs. 17-18; 131-134
- **NCTM Navigations – Geometry**
- MathThematics Module 7
- **Shapes and Designs (CMP)**

Instructional Notes:

- Identify and select appropriate units to measure area. (M-3-M).
<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence/Assessments of Learning</th>
<th>Instructional Notes /Strategies</th>
<th>Additional Resources</th>
</tr>
</thead>
</table>
| 24 E | Use mathematical terms to describe the basic properties of 3-dimensional objects (faces, vertices, edges, base) (G-2-M). | • TLW identify 3-dimensional figures.
• TLW tell how many faces, edges, bases, and vertices a specific 3-dimensional object has.
GQ: Can students identify 3-dimensional objects?
GQ: Can students list the number of faces, edges, bases, and vertices a specific 3-dimensional object has? | **Instructional Notes:**
Students need to use actual objects in order to find the number of faces, vertices, edges, and bases the objects have. Be sure to do this before just showing them pictures.
Materials:
Activity 1 Vocabulary Cards
(mandatory optional)
Activity 8 3-D Figures
(mandatory)
Covering and Surrounding (CMP)
Glencoe Chapter 14.4
wkbk. pgs. 715-716
Filling and Wrapping (CMP)
McDougal Littell Chapter 10.5
wkbk. pgs. 139-140
NCTM Navigations – Geometry
MathThematics
Module 7 pgs. 467-478 | **Activity 12** Picture It! (optional)
To challenge students, volume of cubes and rectangle prism could be introduced. |
| 25 I | Relate polyhedra to their 2-dimensional shapes by drawing or sketching their faces (G-2-M)(G-4-M). | • TLW identify the nets for 3-dimensional figures.
• TLW draw nets for 3-dimensional figures. (cube, rectangular prism)
• TLW identify the 2-D shapes that make up the faces of 3-D objects.
GQ: Can students use various strategies to find reasonable estimates for measures of geometric objects in the world around them?
GQ: Can students match a 3-D object with its net?
GQ: Can students draw nets for 3-dimensional figures? (cube, rectangular prism) | **Instructional Notes:**
This is a new skill for the students. They need to use boxes to begin this. They can take them apart and lay each side flat to see what the net would look like. When sketching or drawing a net for a box, they need to label each face as top, bottom, left side, right side, front, back. This helps them to see what the net would fold into. After much experience with this, have students try to identify given nets to see if they can tell what 3-dimensional figure it would fold into. They can practice folding nets | **Activity 9** 3-D Construction (optional)
Activity 12 Picture It! (optional)
Challenge Students can estimate the area and perimeter of the faces of the 3-D objects. |
Lafayette Parish School System
Curriculum Map
Grade 6 Math
Unit 5: Geometry, Perimeter, Area, and Measurement
February 1, 2012 – March 20, 2012
Edusoft Range – after iLeap

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence/Assessments of Learning</th>
<th>Instructional Notes /Strategies</th>
<th>Additional Resources</th>
</tr>
</thead>
</table>
| 27 I | Make and test predictions regarding tessellations with geometric shapes (G-3-M). | • TLW make predictions regarding tessellations with geometric shapes. (Example: Can a regular pentagon tessellate?)
• TLW relate angle measures to this tessellation prediction.
• TLW tessellate with pattern blocks.
GQ: Can students tessellate with pattern blocks?
GQ: Can students make predictions regarding tessellations? | that are given to them.
Materials:
Activity 8 3-D Figures
(mandatory)
Activity 9 3-D Construction
(mandatory)
Vocabulary cards
Glencoe 14.6
wkbk. pgs. 725-726
Filling and Wrapping (CMP)
MathThematics Module 7 pgs. 467-478
NCTM Navigations – Geometry | |

Instructional Notes:
Students need to use pattern blocks or some other manipulatives to see what will tessellate. Bring in measures of the angles of the shapes to see if they can find a connection. If the angle measures are factors of 360 degrees, the shape will tessellate. Discuss why this is true. It is difficult for students to look at pictures to decide if a shape will tessellate, especially if the student has not actually done tessellation himself. Modeling tessellation on the overhead often helps, and demonstrates to the students that no gaps can exist between the shapes.

Activity 12 (optional)
Challenge: Students can tessellate and color a design on grid paper.
<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence/Assessments of Learning</th>
<th>Instructional Notes /Strategies</th>
<th>Additional Resources</th>
</tr>
</thead>
</table>

- **Materials:**
 - Vocabulary cards
 - **Activity 10 Sliding Shapes** *(mandatory)*
 - *Shapes and Designs* (CMP)
 - *Covering and Surrounding* (CMP)
 - *NCTM Navigations – Geometry*
 - *Glencoe 13.6b*
 - *McDougall Littell pp. 572-573*
Unit Description

The focus of this unit is to further the development of the fundamental counting principle. Opportunities are provided for students to organize and list possible outcomes to solve real-life situations. The extension of probability settings includes complementary events and recognition of equally likely (equally probable) events in experiments.

Student Understandings

Students understand that counting principles describe the total number of possibilities or choices for certain selections. They know that to find the total number of possible occurrences, one multiplies the number of different ways each choice can occur.

Vocabulary List:
- probability
- fair game
- possibility
- equally likely
- outcome
- favorable outcome
- tree diagram
- equally probable
- complementary events
- random
- combinations
- systematic list
- total possible outcome (sample space)
- ratio

Reminder: All GLEs can be further developed using *Use It, Don’t Lose It!, Project Lift, Buckle Down, Rise and Shine,* or other comparable daily focus. They can also be covered using RENMath by those schools who utilize that program.

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence/Assessments of Learning</th>
<th>Instructional Notes /Strategies</th>
<th>Additional Resources</th>
</tr>
</thead>
</table>
| 34 E | Use lists, tree diagrams and tables to determine the possible combinations from two disjoint sets when choosing one item from each set (combinations). | • TLW determine combinations through the use of systematic lists (organized lists).
• TLW determine combinations through the use of tree diagrams which he/she will create.
• TLW determine combinations through the use of total possible combinations.
• TLW determine the total possible outcomes.
• TLW demonstrate ability to express probability in numbers between 0 and 1.
• TLW represent probability as common fraction (ratio), decimal, and percent.
• TLW make predictions from probability outcomes. | Instructional Notes:
Students need to learn to make tree diagrams first; then they can learn how to determine the number of possible combinations. They need to use their tree diagrams to answer real-life questions regarding the probability of an event occurring. Show them how to write the probability three ways: as a fraction (ratio), with a colon, and using the word “to.” Explain that the fraction (ratio) is most commonly used. This will lead them to solve complementary event problems later in this unit. From the tree diagram, students can also make organized lists of all the possible outcomes. Students need to be able to compare the outcomes from two tree diagrams and give their similarities and differences. They also need to be able to give the probability of an event NOT occurring. Tie this into the | Activity 7 Figure This! (optional)
Activity 8 Probability and Literature (optional) |
Grade 6 Math

Unit 6: Taking a Chance

Time Frame: 8 days
March 22, 2012 – March 30, 2012

Edusoft Range after iLEAP

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence/Assessments of Learning</th>
<th>Instructional Notes /Strategies</th>
<th>Additional Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>E</td>
<td>Apply the meaning of equally likely and equally probable to real-life situations (D-5-M) (D-6-M).</td>
<td>probabilities of an event happening or not happening equaling 100%.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• TLW determine and apply the meaning of equally likely and equally probable to real-life situations.</td>
<td>Materials:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• TLW make predictions from probability outcomes and relate this to equally likely situations.</td>
<td>Activity 2 Probability (mandatory)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• TLW determine if a game is fair or unfair.</td>
<td>Activity 3 On a Roll! (mandatory)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• TLW use tree diagrams to determine if events are equally likely/equally probable.</td>
<td>Activity 4 A Lunch Combo (mandatory)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Instructional Notes:</td>
<td>Vocabulary Self Awareness Chart</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Use real-life examples to introduce this. For example, if there is a 50% chance of rain tomorrow, is it equally likely that it will rain or not rain?</td>
<td>Brainstorm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Students can use the tree diagrams or organized lists they made to see which events are equally likely to occur or not occur. Many simple hands-on activities, such as using spinners, can be done in this unit to illustrate whether or not events are equally likely to occur. Students should be able to justify answers in writing.</td>
<td>Story Chain</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Materials:</td>
<td>Learning Log</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Activity 2 Probability (mandatory)</td>
<td>How Likely Is It? (CMP)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Activity 6 How Likely? (optional)</td>
<td>Glencoe Chapter 11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Activity 7 Figure This! (optional)</td>
<td>DEEP Probability Strand Binder</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Activity 8 Probability and Literature (optional)</td>
<td>McDougal Littell Chapter 13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NCTM Navigations – Probability</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MathThematics Module 4</td>
<td></td>
</tr>
</tbody>
</table>
Lafayette Parish School System
Curriculum Map
Grade 6 Math
Unit 6: Taking a Chance
Time Frame: 8 days
March 22, 2012 – March 30, 2012
Edusoft Range after iLEAP

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence/Assessments of Learning</th>
<th>Instructional Notes /Strategies</th>
<th>Additional Resources</th>
</tr>
</thead>
</table>
| 35I | Illustrate and apply the concept of complementary events (D-5-M). | • TLW find the probability of complementary events.
• TLW represent the probability as fractions, decimals, and percents
GQ: Can students use various strategies when working with complementary event to find probability? | Instructional Notes:
Students need much practice with this. Try to get them to discover that the probability of complementary events occurring is the product of the probability of each event occurring. Give real-life examples, using dice, spinners, colored blocks, etc.
Students can use the tree diagrams or organized lists they made to find the probability of complementary events occurring.
This GLE can be used as an instruction focus.
Materials:
Learning Log
Vocabulary cards
How Likely Is It? (CMP)
Glencoe Chapter 11
DEEP Probability Strand Binder
McDougal Littell Chapter 13
NCTM Navigations – Probability
MathThematics Module 4 | Activity 1 Probability Vocabulary Awareness (optional)
Activity 5 Paper Pull (optional)
Activity 6 How Likely? (optional)
Activity 7 Figure This! (optional)
Activity 8 Probability and Literature (optional)
Math and Literature Connections |
Lafayette Parish School System
Curriculum Map
Grade 6 Math
Unit 7: Strengthening Whole Numbers

Time Frame: 2 weeks
April 24, 2012 – May 9, 2012

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence/Assessments of Learning</th>
<th>Instructional Notes /Strategies</th>
<th>Additional Resources</th>
</tr>
</thead>
</table>
| **8** | Demonstrate the meaning of positive and negative numbers and their opposites in real-life situations (N-3-M)(N-5-M). | *TLW be able to place positive and negative integers on a number line.*
TLW demonstrate knowledge that the sum of opposites is always 0.
TLW represent numbers in real-life situations as integers.
(GQ: Can the student demonstrate the meaning of positive and negative numbers and their opposites in real-life situations?)
(GQ: Can the students demonstrate knowledge that the sum of opposites is always 0?) | **Instructional Notes:**
This GLE is used as a focus for the first week of this unit to introduce the students to integers. Use real-life applications and the number line to help explain negative numbers and opposites.
Materials:
MathThematics Module 7
McDougal Littell Chapters 5 and 11
MathThematics Module 7 Accentuate the Negative (CMP) | **Hands on equations (zero pairs)** |
| **12** | Divide 4-digit numbers by 2-digit numbers with the quotient written as a mixed number or a decimal (N-7-M). | *TLW review 2-digit multiplication.*
TLW identify division as repeated subtraction.
TLW estimate quotients by rounding to compatible numbers.
TLW divide 4-digit numbers by 2-digit numbers.
TLW check quotient answers by multiplying.
TLW determine which form of remainder is appropriate in problem solving situations.
TLW understand repeating decimals.
TLW apply division to fractions, decimals, and percent as it relates to the remainder.
TLW apply division to multi-step real-life problems. | **Instructional Notes:**
Many students do not understand what division actually is. They need many real-life examples of division. Have students estimate a quotient before actually dividing; then compare the estimate with the actual answer. Teach students to relate their estimates to math facts so that the quotient and divisor will be compatible. Begin dividing by 2-digit numbers where there is no remainder. Move to dividing | **Activity 2** Remainder Game (optional)
Activity 5 I Have; Who Has? (optional)
Suggestions: use of tiles, cards, base ten blocks, etc. |
Lafayette Parish School System
Curriculum Map
Grade 6 Math
Unit 7: Strengthening Whole Numbers
April 24, 2012 – May 9, 2012

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence/Assessments of Learning</th>
<th>Instructional Notes /Strategies</th>
<th>Additional Resources</th>
</tr>
</thead>
</table>
| 17 E | Find solutions to 2-step equations with positive integer solutions. | • TLW apply division to 2-step equations.
• TLW apply division to real-life problems.
GQ: Can student solve multi-step problems involving multiplication and division of whole numbers? | where there is a remainder and teach students how to represent this remainder as a fraction and a decimal. Move to real-life problems where students must decide what form of the remainder is appropriate for the given problem or if a remainder is required. When working with repeating decimals, be sure the students can work these and correctly represent the repeating decimal before allowing them to use a calculator. They need to see that there is no repeating bar on the calculator, and some of the repeating decimals are rounded. (Example, .66666667 is actually .666 with the 6 repeating infinitely.)
Materials:
Activities 1 Understanding Division (mandatory)
Activity 3 Dealing with Remainders (mandatory)
Activity 4 Division Problems (mandatory)
Story Chain
Glencoe p. 591
MathThematics p. 596, Module 3
McDougal Littell Chapter 1, p. 691 | Hands on Equations |

GQ: Can students explain the reasonableness of an answer in a division problem?
GQ: Can students use different methods to solve division problems?
GQ: Can students handle the choice of representations for quotients?
GQ: Can students solve multi-step problems involving multiplication and division of whole numbers? |
Lafayette Parish School System
Curriculum Map
Grade 6 Math
Unit 7: Strengthening Whole Numbers
April 24, 2012 – May 9, 2012

Time Frame: 2 weeks

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence/Assessments of Learning</th>
<th>Instructional Notes /Strategies</th>
<th>Additional Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>problems where students must determine what operations are needed to solve it. This can also be tied to matching equations to verbal statements as a review. Materials: Glencoe Chapter 9 McDougal Littell Chapter 12 MathThematics Module 4 McDougal Littell Chapter 12 MathThematics Module 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lafayette Parish School System
Curriculum Map
Grade 6 Math
Unit 8: Integers, Patterns, and Algebra
Time Frame: 2 weeks
May 10, 2012 – May 21, 2012

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence/Assessments of Learning</th>
<th>Instructional Notes /Strategies</th>
<th>Additional Resources</th>
</tr>
</thead>
</table>
| 38 I | Describe patterns in sequences of arithmetic and geometric growth and now-next relationships (i.e., growth patterns where the next term is dependent on the present term) with numbers and figures (P-3-M) (A-4-M) | • TLW review arithmetic and geometric growth.
• TLW describe patterns by writing the “rule.”
• TLW complete patterns and tables.
• TLW write expressions from input-output tables.
GQ: Can students recognize patterns in tables, arithmetic sequences, geometric sequences, or now-next (recursive) patterns and discuss them or extend them? | Instructional Notes: This should be a review of patterns from Unit 1. Input-output tables can be used as well as given patterns. Students should be able to complete a pattern or input-output table and write the “rule” for the pattern. This GLE can be used as a focus during the rest of the unit.
Materials: Activities 7 Sequence Counting and Activity 8 Pumping Gas Rules (combine these) (mandatory)
NCTM Navigations – Algebra
McDougal Littell Chapter 1 Learning Log
MathThematics Module 1
Brainstorm
Glencoe Chapter 9 | |
| 15 I | Match algebraic equations and expressions with verbal statements and vice versa (A-1-M) (A-3-M) (A-5-M) (P-2-M) | • TLW be able to define and identify a variable.
• TLW demonstrate ability to match algebraic expressions with verbal statements and vice versa.
• TLW demonstrate ability to match algebraic | Instructional Notes: Review variables and give many examples of when they are used. Begin this skill with simple one- | Buckle Down |

Unit Description
The focus of this unit is on working with integers, patterns, and variables. A number line is used to represent integers and inverses. Opportunities to represent, analyze, and generalize a variety of patterns with tables, graphs, words, and when possible, symbolic rules are provided.

Student Understandings
Students should have a conceptual understanding of different uses of a variable. They know that symbolic algebra can be used to represent situations and to solve problems, especially those that involve linear relationships. Students use modeling as an appropriate strategy to solve math problems whether by drawing figures, using a number line, or other technique. They can model and identify perfect squares up to 144 and can match algebraic equations and expressions with verbal statements and vice versa.

Vocabulary List:
- integer
- opposite
- equation
- inequality
- evaluate
- expression
- independent variable
- dependent variable
- exponent
- negative
- verbal statements
- inverse
- operation
- patterns
- square root
- input-output table
- arithmetic sequence
- geometric sequence
- additive inverse
- perfect square
- square root

Reminder: All GLEs can be further developed using Use It, Don’t Lose It!, Project Lift, Buckle Down, Rise and Shine, or other comparable daily focus. They can also be covered using RENMath by those schools who utilize that program.
Lafayette Parish School System
Curriculum Map
Grade 6 Math
Unit 8: Integers, Patterns, and Algebra

Time Frame: 2 weeks
May 10, 2012 – May 21, 2012

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence/Assessments of Learning</th>
<th>Instructional Notes /Strategies</th>
<th>Additional Resources</th>
</tr>
</thead>
</table>
| M) | equations with verbal statements and vice versa.
- TLW be able to write a word or mathematical sentence from a description or a real-life situation.
GQ. Can students match algebraic equations and expressions with verbal statements and vice versa? | step expressions and equations. Use real-life examples to help students understand this concept. | |
| 16 | Evaluate simple algebraic expressions using substitution (A-2-M).
- TLW evaluate expressions using substitution and correct order of operations.
- TLW match stories with algebraic expressions.
GQ: Can students evaluate expressions for specified variable values?
GQ: Can students match or create stories to go with a given algebraic expression or equation? | Instructional Notes:
This GLE was introduced in Unit 5. Review order of operations and give much practice on matching stories with algebraic expressions. Be sure students know what each variable stands for.
Materials:
NCTM Navigations – Algebra
McDougal Littell Chapter 1 Learning Log
MathThematics Module 4
Brainstorm
Glencoe Chapter 9 | Activity 4 Equal Concentration (optional)
Activity 5 Substituting Numbers (optional)
Hands on Equations |
| 17 | Find solutions to 2-step equations with positive integer solutions (substitution) (A-2-M).
- TLW solve 1- and 2-step equations using substitution.
- TLW check answers by substituting the solution for the variable.
- TLW will match stories with algebraic equations.
GQ: Can students algebraically solve one and two step equations? | Instructional Notes:
This GLE was also done in Unit 5, but students need much practice in solving equations. Begin solving with substitution first, then move to algebraically solving them. Be sure students know how to check their solutions. Practice matching stories to algebraic equations, and have students write about the reasons for their choices.
Materials:
Activities 6 Two-Step Math and Activity 9 Input-Out (combine these) (mandatory)
McDougal Littell Chapter 1 Learning Log | Activity 4 Equal Concentration (optional)
Activity 5 Substituting Numbers (optional)
Hands on Equations |
Lafayette Parish School System
Curriculum Map
Grade 6 Math
Unit 8: Integers, Patterns, and Algebra

Time Frame: 2 weeks
May 10, 2012 – May 21, 2012

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence/Assessments of Learning</th>
<th>Instructional Notes /Strategies</th>
<th>Additional Resources</th>
</tr>
</thead>
</table>
| **6 E** | Compare positive fractions and positive and negative integers using symbols and number line (N-3-M). | • TLW correctly place integers and fractions on a number line.
• TLW compare positive fractions and positive and negative integers by using the symbols <, >, =, ≤, ≥.
• TLW plot inequalities on a number line (open and closed circles).
GQ: Can student use different methods to interpret and represent integers on a number line? | **Instructional Notes:**
Students should be familiar by now with number lines. Have them place integers and fractions on the number line and discuss. Move from the number line to using symbols to compare fractions and positive and negative integers. Inequalities were introduced to the students last year. Tie the plotting of inequalities to placing the numbers on the number line so that students can see the relationships between the symbols and the graph.
Materials:
Learning Log
NCTM Navigations – Algebra
DEEP Algebra Strand Binder
Glencoe Chapter 8
McDougal Littell Chapters 1 and 5
MathThematics Module 7 | **Activity 3** Newspaper Comparisons (optional) |
| **8 E** | Demonstrate the meaning of positive and negative numbers and their opposites in real-life situations (N-3-M) (N-5-M). | • TLW give the meaning of integers and their opposites and compare them on a number line.
GQ: Can students use different methods to interpret and represent integers on a number line?
GQ: Can student discuss the significance of additive inverse? | **Instructional Notes:**
Students need to recognize that the sum of opposites is always 0. Give real-life problem situations for them to figure this out. Have students write about the relationship of opposites.
Materials:
Learning Log
NCTM Navigations – Algebra
DEEP Algebra Strand Binder
Accentuate the Negative (CMP) | **Activity 3** Newspaper Comparisons (optional)
Hands on Equations |
Lafayette Parish School System
Curriculum Map
Grade 6 Math
Unit 8: Integers, Patterns, and Algebra
May 10, 2012 – May 21, 2012

<table>
<thead>
<tr>
<th>GLE #</th>
<th>GLEs</th>
<th>Evidence/Assessments of Learning</th>
<th>Instructional Notes /Strategies</th>
<th>Additional Resources</th>
</tr>
</thead>
</table>
| 14 I | Model and identify perfect squares up to 144 (A-1-M). | • TLW identify and model perfect squares.
• TLW find square roots of perfect squares.
• TLW approximate square roots of non-perfect squares.
GQ: Can students find the square root of perfect squares up to 144? | Instructional Notes:
This should be a review. If time permits introduce approximating square roots of non-perfect squares.
Materials:
Activity 2 Below Zero
Temperatures (mandatory)
NCTM Navigations – Geometry Covering and Surrounding (CMP) | Activity 1 Graphing Perfect Squares (optional) |
| 37 E | Describe, complete, and apply a pattern of differences found in an input-output table (P-1-M)(P-2-M)(P-3-M). | • TLW be able to complete an input-output table.
• TLW demonstrate ability to interpret input-output tables by writing the “rule” for the table in words.
GQ: Can students complete and write the rule for an input-output table? | Materials:
Activity 9 Input-Out and Activity 6 Two-Step Math (combine these) (mandatory) |